4y

un a m 5 n a |

stronomy

Hannu Karttunen Sixth Edition
' Pekka Kroger
T\ - Heikki Oja
g 'Mafkku Poutanen
" Karl Johan Donner
Editors

=»

@ Springer



Fundamental Astronomy



Hannu Karttunen - Pekka Kroger -
Heikki Oja - Markku Poutanen -
Karl Johan Donner

Editors

Fundamental Astronomy

Sixth Edition

With 419 lllustrations

Including 34 Colour Plates

and 83 Exercises with Solutions

@ Springer



Editors

Hannu Karttunen Markku Poutanen

Tuorla Observatory Dept. Geodesy & Geodynamics
University of Turku Finnish Geodetic Institute
Piikkio, Finland Masala, Finland

Pekka Kroger Karl Johan Donner

Helsinki, Finland Finnish Geodetic Institute

Heikki Oja Helsinki, Finland

Observatory and Astrophysics
Laboratory

University of Helsinki

Helsinki, Finland

ISBN 978-3-662-53044-3 ISBN 978-3-662-53045-0 (eBook)
DOI 10.1007/978-3-662-53045-0

Library of Congress Control Number: 2016957787

Springer Heidelberg New York Dordrecht London

© Springer-Verlag Berlin Heidelberg 1987, 1994, 1996, 2003, 2007, 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made.

Cover illustration: Atacama Large Millimeter/submillimeter Array (ALMA) is an interferom-
eter telescope composed of 66 antennas. ALMA observes molecular gas and dust of the cool

Universe—building blocks of stars, planetary systems, galaxies and life itself. Credit: ESO/
Y. Beletsky

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


http://www.springer.com
http://www.springer.com/mycopy

Preface to the Sixth Edition

As the title suggests, this book is about fundamental things that one might
expect to remain fairly the same. Yet astronomy has evolved enormously over
the last few years, and only a few chapters of this book have been left unmod-
ified.

Since the book is used also by many amateurs, the introductory chapter
has been extended to give a brief summary of different celestial objects to
“soften” the jump to rather technical topics.

The chapter on the solar system was very long. It has now been split into
two separate chapters. Chapter 7 deals with general properties of the solar
system. Individual objects are discussed in Chap. 8, which is more prone
to change when new data will accumulate. Also, new data on exoplanets is
obtained at an increasing rate. Therefore exoplanets are given a chapter of
their own; it is at the end of the book, since it is closely related to astrobiology,
already included in the previous edition. These last chapters may change more
than the rest of the book in the future.

These changes mean that the numbering of formulas and figures has
changed quite extensively after the previous version of the book.

Cosmology and galactic astronomy have still been evolving rapidly. There-
fore there are many revisions to the chapters on the Milky Way, galaxies, and
cosmology.

In addition, several other chapters contain smaller revisions and many of
the previous images have been replaced with newer ones.

Helsinki, Finland Hannu Karttunen
April 2016 Pekka Kroger
Heikki Oja

Markku Poutanen
Karl Johan Donner



Preface to the First Edition

The main purpose of this book is to serve as a university textbook for a first
course in astronomy. However, we believe that the audience will also include
many serious amateurs, who often find the popular texts too trivial. The lack
of a good handbook for amateurs has become a problem lately, as more and
more people are buying personal computers and need exact, but comprehen-
sible, mathematical formalism for their programs. The reader of this book is
assumed to have only a standard high-school knowledge of mathematics and
physics (as they are taught in Finland); everything more advanced is usually
derived step by step from simple basic principles. The mathematical back-
ground needed includes plane trigonometry, basic differential and integral
calculus, and (only in the chapter dealing with celestial mechanics) some vec-
tor calculus. Some mathematical concepts the reader may not be familiar with
are briefly explained in the appendices or can be understood by studying the
numerous exercises and examples. However, most of the book can be read
with very little knowledge of mathematics, and even if the reader skips the
mathematically more involved sections, (s)he should get a good overview of
the field of astronomy.

This book has evolved in the course of many years and through the work
of several authors and editors. The first version consisted of lecture notes by
one of the editors (Oja). These were later modified and augmented by the
other editors and authors. Hannu Karttunen wrote the chapters on spherical
astronomy and celestial mechanics; Vilppu Piirola added parts to the chapter
on observational instruments, and Goran Sandell wrote the part about radio
astronomy; chapters on magnitudes, radiation mechanisms and temperature
were rewritten by the editors; Markku Poutanen wrote the chapter on the so-
lar system; Juhani Kyr6ldinen expanded the chapter on stellar spectra; Timo
Rahunen rewrote most of the chapters on stellar structure and evolution; Ilkka
Tuominen revised the chapter on the Sun; Kalevi Mattila wrote the chapter
on interstellar matter; Tapio Markkanen wrote the chapters on star clusters
and the Milky Way; Karl Johan Donner wrote the major part of the chap-
ter on galaxies; Mauri Valtonen wrote parts of the galaxy chapter, and, in
collaboration with Pekka Teerikorpi, the chapter on cosmology. Finally, the
resulting, somewhat inhomogeneous, material was made consistent by the
editors.

The English text was written by the editors, who translated parts of the
original Finnish text, and rewrote other parts, updating the text and correcting

vii
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Preface to the First Edition

errors found in the original edition. The parts of text set in smaller print are
less important material that may still be of interest to the reader.

For the illustrations, we received help from Veikko Sinkkonen, Mirva
Vuori and several observatories and individuals mentioned in the figure cap-
tions. In the practical work, we were assisted by Arja Kyr6ldinen and Merja
Karsma. A part of the translation was read and corrected by Brian Skiff. We
want to express our warmest thanks to all of them.

Financial support was given by the Finnish Ministry of Education and Suo-
malaisen kirjallisuuden edistdmisvarojen valtuuskunta (a foundation promot-
ing Finnish literature), to whom we express our gratitude.

Helsinki, Finland Hannu Karttunen
June 1987 Pekka Kroger
Heikki Oja

Markku Poutanen
Karl Johan Donner
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Introduction

On a dark, cloudless night, at a distant location
far away from the city lights, the starry sky can
be seen in all its splendour (Fig. 1.1). It is easy to
understand how these thousands of lights in the
sky have affected people throughout the ages.

As long as human beings have existed, they
have certainly wondered the sky. In the sky,
ancient people saw figures related to religious
myths and omens sent by the gods. However,
already a couple of millennia ago the real as-
tronomy started to evolve, separating itself from
religions and astrological superstitions. People
started to study the sky for its own sake.

1.1 Celestial Objects

In the 17th century people started to realise that
the Earth is not the centre of the Universe. About
the same time emerged the current view that stars
are celestial bodies similar to our Sun. The seem
to be faint dots only due to their huge distances.
We now know that the Sun and stars are hot glow-
ing balls of gas, producing energy when fusion
reactions convert hydrogen to helium and also to
other heavier elements (Chap. 11).

Although stars actually move at enormous
speeds, the sky does not seem to change even
in thousands of years, due to the vast distances
of the stars. In addition to the Sun and the Moon
there are some other objects that move with re-
spect to the stars. Since the antiquity, these mov-
ing objects have been called planets, from the
Greek word meaning a wanderer.

© Springer-Verlag Berlin Heidelberg 2017

The rapid motions of the planets reveal that
they are much closer than the stars. Indeed they
are objects orbiting the Sun. According the cur-
rent definition (Chap. 7) there are eight planets
orbiting the Sun: Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus and Neptune. In addition
to these relatively big bodies a lot of different
smaller objects move around the Sun: dwarf plan-
ets, asteroids, comets and meteoroids (Chap. 8).
Mosts planets also have their own satellites or
moons. Planets, moons and minor bodies do not
produce light by nuclear fusion; instead they
shine just by reflecting the sunlight.

At the centre of the solar system shines the
Sun, producing energy by fusion reactions
(Chap. 13). It is the nearest star, and studying its
properties reveals also a lot about other stars.

A few thousand stars can be seen by the naked
eye, but even a small telescope reveals millions
of them. Based on their properties, stars can be
divided into different categories. A great major-
ity of them is main-sequence stars, like our Sun.
Some of them, though, are much bigger, giants
or supergiants, and some are much smaller, white
dwarfs. Different stars are usually related to dif-
ferent evolutionary stages in the lives of stars.
Many stars are variable stars, whose brightness
varies with time.

Rather recently found objects are compact
stars: neutron stars and black holes (Chap. 15).
Their material is squeezed into such a com-
pressed form and their gravitational field is so
strong that Einstein’s general theory of relativity
must be used to describe their matter and space
around them.

H. Karttunen et al. (eds.), Fundamental Astronomy, DOI 10.1007/978-3-662-53045-0_1
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1 Introduction

Fig. 1.1 The starry sky in
all its splendour can be
seen only far away from
the light pollution of cities.
(Pekka Parviainen)

Fig. 1.2 The Pleiades is
one of the best-known open
star clusters. The six
brightest stars can easily be
seen with the naked eye.
Photographs reveal also
interstellar gas reflecting
the light of the stars.
(NASA, ESA,
AURA/Caltech, Palomar
Observatory)

The Sun is a solitary star. Many stars appear in
pairs, they are binary stars, orbiting around their
common centre of mass (Chap. 10). Also systems
of several stars are relatively common.

Bigger groups of stars are star clusters
(Chap. 17). Open clusters (Fig. 1.2) usually con-
tain a few tens or hundreds of stars, that were born
in the same area, usually quite recently. Eventu-
ally the stars will diverge to their own paths.

Globular cluster (Fig. 1.3), on the other hand,
may contain hundreds of thousands or millions of
stars, which are usually very old.

The interstellar space corresponds pretty well
to our idea about a perfect vacuum. However, it
is not totally empty but contains interstellar mat-
ter, mainly hydrogen and helium, but also minute
amounts of heavier elements, molecules and dust
(Chap. 16). The interstellar medium does not
fill the space as a uniform mist, but forms huge
clouds (Fig. 1.4).

New stars are born by condensing from the in-
terstellar matter. When the density, pressure and
temperature of the condensing cloud have risen
high enough, fusion reactions start and a new star



1.2 The Role of Astronomy

Fig. 1.3 The globular
cluster M13 in the
Hercules constellation
contains over a million
stars. The cluster can even
be seen with the naked eye
as a small nebulous spot.
(Palomar Observatory)

begins to radiate the energy released in the re-
actions (Chap. 12). After millions or billions of
years the energy resources will be exhausted. The
evolution then depends on the mass of the star.
The smallest stars just cool down and fade away,
but more massive ones either eject part of their
mass back to space as planetary nebula or ex-
plode as supernovas. Thus matter converted by
the nuclear reactions of the stars is mixed with
the interstellar matter.

All stars visible as separate objects to the
naked eye or with binoculars belong to the Milky
Way (Fig. 1.5, Chap. 18). The Milky Way is a
system containing a couple of billion stars, a
galaxy (Figs. 1.6 and 1.7, Chap. 19). It takes
about 100,000 years to travel across the Milky
Way with the speed of light.

Milky Way is not the only galaxy, but just
one of very many similar systems. Galaxies are
the basic building blocks of the Universe. They
do not spread out evenly but form small galaxy
groups, bigger galaxy clusters and even bigger
superclusters.

Galaxies are observed close to the edge of the
visible universe. Nuclei of some galaxies are seen
as quasars; the most distant of them have radiated
the light we detect now when the age of the Uni-
verse was only one tenth of the current value.

1.2  The Role of Astronomy

Already a long time ago man was interested in
celestial phenomena. Several bone carvings made
by the Cro-Magnon men as early as 30,000 years
ago have been found, possibly recording Lunar
phases. In that case these calendars would be
the oldest astronomical documents, predating the
skill of writing by some 25,000 years.

Agriculture required a good knowledge of
the seasons. Religious rituals and prognostica-
tion were based on the locations of the celestial
bodies. Thus time reckoning became more and
more accurate, and people learned to calculate
the movements of celestial bodies in advance.

During the rapid development of seafaring,
when voyages extended farther and farther from
home ports, position determination presented
a problem for which astronomy offered a prac-
tical solution. Solving these problems of navi-
gation were the most important tasks of astron-
omy in the 17th and 18th centuries, when the first
precise tables on the movements of the planets
and on other celestial phenomena were published.
The basis for these developments was the discov-
ery of the laws governing the motions of the plan-
ets by Copernicus, Tycho Brahe, Kepler, Galilei
and Newton.
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Fig. 1.4 The North America nebula in the constellation
of Cygnus is a large cloud of interstellar gas. The nebula
appears brighter than the background because the radia-
tion from the nearby stars makes it shine. The nebula is,

Astronomical research has changed man’s
view of the world from geocentric, anthropocen-
tric conceptions to the modern view of a vast uni-
verse where man and the Earth play an insignifi-
cant role. Astronomy has taught us the real scale
of the nature surrounding us.

Modern astronomy is fundamental science,
motivated mainly by man’s curiosity, his wish to
know more about Nature and the Universe. As-
tronomy has a central role in forming a scien-
tific view of the world. “A scientific view of the
world” means a model of the universe based on
observations, thoroughly tested theories and log-
ical reasoning. Observations are always the ulti-
mate test of a model: if the model does not fit
the observations, it has to be changed, and this

however, very faint and difficult to observe visually. The
brightest star on the right is @ Cygni or Deneb. (Photo
M. Poutanen and H. Virtanen)

process must not be limited by any philosophical,
political or religious conceptions or beliefs.

1.3  Astronomical Objects of

Research

Modern astronomy explores the whole Universe
and its different forms of matter and energy. As-
tronomy can be divided into different branches in
several ways, based e.g. on the object of research
or the method used.

The Earth (Fig. 1.10) is of interest to astron-
omy for many reasons. Nearly all observations
must be made through the atmosphere (Fig. 1.9),
and the phenomena of the upper atmosphere and
magnetosphere reflect the state of interplanetary
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Fig. 1.5 The Milky Way
appears as a nebulous band
stretching across the sky.
A telescope reveals that it
consists of myriads of stars
as observed already by
Galileo Galilei 400 years
ago. The Milky Way is a
flat disclike stellar system.
Our solar system is close to
the plane of the disc, and
looking in the direction of
the plane we see a lot of
stars. But if we look away
from the disc the stellar
density is much lower. The
disc contains also unevenly
distributed interstellar gas
and dust, which obscures
the view in some
directions. Near the lower
edge of the picture the
Milky Way seems to split
into two branches because
the distant stars are behind
the intervening obscuring
matter. (Pekka Parviainen)

space. The Earth is also the most important ob-
ject of comparison for planetologists.

The Moon is still studied by astronomical
methods, although spacecraft and astronauts have
visited its surface and brought samples back to
the Earth. To amateur astronomers, the Moon
is an easy and interesting object for observa-
tions.

Space probes have already studied all plan-
ets, many of their satellites, some asteroids and

comets. The most distant planets, Uranus and
Neptune, have been observed only by fly-bys, but
all the other ones also by orbiters. Spacecraft have
softlanded on Mars, Venus, Saturn’s moon Ti-
tan and some minor bodies. Exploration by such
probes has tremendously added to our knowledge
about the conditions of these objects. Continuous
monitoring of the planets, however, can still only
be made from the Earth, and many small bodies
of the solar system still await their spacecraft.
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Fig. 1.6 The galaxy M31
in the Andromeda
constellation is a star
system resembling our own
Milky Way. Stars and
interstellar matter
concentrate in spiral arms.
The shape of M31 is a
round, flat disc, but due to
the oblique view it looks
oval. In good conditions
the centre of the galaxy can
be seen even with the
naked eye as a faint
nebulous spot. M31 has
two small elliptic
neighbour galaxies seen
here as bright ellipses. M32
is below the centre of M31
and M110 towards
northeast from the centre.
North is up. The dots are
stars of the Milky Way.
(Bill Schoening, Vanessa
Harvey/REU pro-
gram/NOAO/AURA/NSF)

Fig. 1.7 In addition to the
big galaxies like the Milky
Way there are numerous
much smaller dwarf
galaxies, which are often
irregular in shape. One of
them is the Large
Magellanic Cloud, our
nearest neighbour galaxy.
It is easily seen with the
naked eye, but it is close to
the southern pole of the
sky. (NOAO/Cerro Tololo
Inter-American
Observatory)
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Fig. 1.8 The deep-field
picture of the Hubble space
telescope is a combination
of several images exposed
altogether over 11 days.
The picture shows several
galaxies that are the most
distant ones known. When
we are looking far to space
we are also looking far to
the past since the light
proceeds at a finite speed.
Thus many of the galaxies
in the picture are also
among the oldest known
objects. When we compare
them with the objects in
our neighbourhood we can
deduce how the galaxies
evolved during billions of
years. (NASA)

Fig. 1.9 Although space
probes and satellites have
gathered remarkable new
information, a great
majority of astronomical
observations is still
Earth-based. The most
important observatories are
usually located at high
altitudes far from densely
populated areas. One such
observatory is on Mt
Paranal in Chile, which
houses the European VLT
telescopes. (Photo ESO)

An astronomer can also specialise in study- The largest object of research is the whole
ing several different fields like the Sun, differ- Universe. Earlier this field, cosmology, belonged
ent kinds of stars, star clusters, the Milky Way to theologists and philosophers, but in the 20th
or galaxies (Fig. 1.11). century it became an object of physical theories
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and eventually of concrete astronomical observa-
tions.

Spherical astronomy is an old field of astron-
omy studying the coordinate systems of the ce-
lestial sphere and apparent positions and motions
of the celestial objects. Until the 17th century as-
tronomy was mainly spherical astronomy.

When Isaac Newton published the fundamen-
tal laws of mechanics in 1687 in his Principia
mathematica, the motions of celestial objects got
a physical explanation. That was the beginning
of celestial mechanics, studying the motions from
the planets of the Solar System and satellites or-
biting the Earth to distant galaxies and galaxy
clusters.

Fig.1.10 The Earth as
seen from the Moon.
Thanks to spaceflights we
have seen clearly the
planetary status of the
Earth. The picture was
taken by the Japanese
Kaguya lunar orbiter in
2007. Currently the Moon
is the only celestial object
outside the Earth visited by
human beings, on the
Apollo flights in
1969-1972. JAXA)

Halfway the 19th century it was found out how
spectra can reveal physical properties of celestial
objects. This was the beginning of astrophysics,
studying the physical phenomena of the stars. Re-
sults from astrophysics are utilised particularly in
the research of the Sun, stars and interstellar mat-
ter.

Astronomy can be divided into different bran-
ches also by the wavelengths used. We can talk
about radio, infrared, optical, ultraviolet, X-ray or
gamma-ray astronomy, depending on the wave-
length used in the observations.

Astronomers study also particles coming from
the space, like neutrinos and cosmic rays. Grav-
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Fig. 1.11 Astronomy in the change. Although the num-
bers of astronomical articles have increased in all sub-
fields in the last few decades, the relative proportions have
changed. Cosmology and galaxies are the greatest winners
whereas the share of stellar research has decreased. The

2000 2005 2010

graph illustrates the relative numbers of articles in differ-
ent fields of astronomy in the most influential journals in
1981-2009. (Adapted from the New Worlds, New Hori-
zons in Astronomy and Astrophysics, 2010, p. 120.) Pub-
lished by the US National Science Academy
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Fig. 1.12 The dimensions of the Universe

itational waves are the most recent object of re-

search.

Astronomy and space research may seem
to be related, although they are quite differ-
ent things. Space research includes all activi-

ties in the space, but only a minor fraction of
that is astronomical research. Space research is
mainly commercial services, like communica-
tion, weather observations, navigation, remote
sensing and environmental control, and also mil-
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itary reconnaissance. Space astronomy is a field
of astronomy that utilises observations made by
satellites and space probes.

1.4 The Scale of the Universe

The masses and sizes of astronomical objects
are usually enormously large. But to understand
their properties, the smallest parts of matter,
molecules, atoms and elementary particles, must
be studied. The densities, temperatures and mag-
netic fields in the Universe vary within much
larger limits than can be reached in laboratories
on the Earth (Fig. 1.12).

The greatest natural density met on the Earth is
22,500 kg m~3 (osmium), while in neutron stars
densities of the order of 10'® kgm™3 are possi-
ble. The density in the best vacuum achieved on
the Earth is only 10~ kgm™3, but in interstellar
space the density of the gas may be 107! kgm ™3
or even less. Modern accelerators can give parti-
cles energies of the order of 10'3 electron volts
(eV). Cosmic rays coming from the sky may have
energies of over 1020 eV.

It has taken man a long time to grasp the vast
dimensions of space. Already Hipparchos in the
second century B.C. obtained a reasonably cor-
rect value for the distance of the Moon. The scale
of the solar system was established together with
the heliocentric system in the 17th century. In
the old geocentric system the distances of planets
did not affect their apparent motions and could

be chosen arbitrarily. In the heliocentric system
this is no more possible. Thus the distances of
the Solar System were known reasonably well as
early as in the 15th century. Also serious attempts
to determine stellar distances were made, but the
first successful measurements were made only in
the 1830’s, and decent estimates for the distances
to the galaxies were obtained only in the 1920’s.
We can get some kind of picture of the dis-
tances involved (Fig. 1.4) by considering the time
required for light to travel from a source to the
retina of the human eye. It takes 8 minutes for
light to travel from the Sun, 5% hours from Nep-
tune and 4 years from the nearest star. We can-
not see the centre of the Milky Way, but the
many globular clusters around the Milky Way
are at approximately similar distances. It takes
about 20,000 years for the light from the glob-
ular cluster of Fig. 1.5 to reach the Earth. It
takes 150,000 years to travel the distance from
the nearest galaxy, the Magellanic Cloud seen on
the southern sky (Fig. 1.7). The photons that we
see now started their voyage when Neanderthal
Man lived on the Earth. The light coming from
the Andromeda Galaxy (Fig. 1.6) in the north-
ern sky originated 2 million years ago. Around
the same time the first actual human using tools,
Homo habilis, appeared. The most distant objects
known, the quasars, are so far away that their ra-
diation, seen on the Earth now, was emitted long
before the Sun or the Earth were born (Fig. 1.8).
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Spherical astronomy is a science studying astro-
nomical coordinate frames, directions and appar-
ent motions of celestial objects, determination of
position from astronomical observations, obser-
vational errors, etc. We shall concentrate mainly
on astronomical coordinates, apparent motions of
stars and time reckoning. Also, some of the most
important star catalogues will be introduced.

For simplicity we will assume that the ob-
server is always on the northern hemisphere. Al-
though all definitions and equations are easily
generalised for both hemispheres, this might be
unnecessarily confusing. In spherical astronomy
all angles are usually expressed in degrees; we
will also use degrees unless otherwise mentioned.

2.1 Spherical Trigonometry

For the coordinate transformations of spherical
astronomy, we need some mathematical tools,
which we present now.

If a plane passes through the centre of a sphere,
it will split the sphere into two identical hemi-
spheres along a circle called a great circle
(Fig. 2.1). A line perpendicular to the plane and
passing through the centre of the sphere inter-
sects the sphere at the poles P and P’. If a sphere
is intersected by a plane not containing the cen-
tre, the intersection curve is a small circle. There
is exactly one great circle passing through two
given points Q and Q' on a sphere (unless these
points are antipodal, in which case all circles
passing through both of them are great circles).
The arc QQ’ of this great circle is the shortest

© Springer-Verlag Berlin Heidelberg 2017

Great circle

Fig. 2.1 A great circle is the intersection of a sphere and
a plane passing through its centre. P and P’ are the poles
of the great circle. The shortest path from Q to Q' follows
the great circle

path on the surface of the sphere between these
points.

A spherical triangle is not just any three-
cornered figure lying on a sphere; its sides must
be arcs of great circles. The spherical trian-
gle ABC inFig. 2.2 has the arcs AB, BC and AC
as its sides. If the radius of the sphere is r, the
length of the arc AB is

|AB|=rc, [c]=rad,

where ¢ is the angle subtended by the arc AB
as seen from the centre. This angle is called the
central angle of the side AB. Because lengths of
sides and central angles correspond to each other
in a unique way, it is customary to give the central
angles instead of the sides. In this way, the radius
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of the sphere does not enter into the equations
of spherical trigonometry. An angle of a spheri-
cal triangle can be defined as the angle between
the tangents of the two sides meeting at a vertex,
or as the dihedral angle between the planes in-
tersecting the sphere along these two sides. We
denote the angles of a spherical triangle by cap-
ital letters (A, B, C) and the opposing sides, or,
more correctly, the corresponding central angles,
by lowercase letters (a, b, c).

The sum of the angles of a spherical triangle is
always greater than 180 degrees; the excess

E=A+B+C—180° @.1)

is called the spherical excess. It is not a constant,
but depends on the triangle. Unlike in plane ge-
ometry, it is not enough to know two of the angles
to determine the third one. The area of a spherical
triangle is related to the spherical excess in a very
simple way:

Area= Er’, [E]=rad. 2.2)

This shows that the spherical excess equals the
solid angle in steradians (see Appendix A.1), sub-
tended by the triangle as seen from the centre.
To prove (2.2), we extend all sides of the tri-
angle A to great circles (Fig. 2.3). These great
circles will form another triangle A’, congruent
with A but antipodal to it. If the angle A is ex-
pressed in radians, the area of the slice S(A)

Fig. 2.2 A spherical triangle is bounded by three arcs of
great circles, AB, BC and C A. The corresponding central
angles are ¢, a, and b

bounded by the two sides of A (the shaded
area in Fig. 2.3) is obviously 2A/2nw = A/m
times the area of the sphere, 4772, Similarly, the
slices S(B) and S(C) cover fractions B/m and
C/m of the whole sphere.

Together, the three slices cover the whole sur-
face of the sphere, the equal triangles A and A’
belonging to every slice, and each point outside
the triangles, to exactly one slice. Thus the area of
the slices S(A), S(B) and S(C) equals the area of
the sphere plus four times the area of A, A(A):

A+B+C
b4

Arr? =4Axr? + 4A(N),
whence
AA)=(A+B+C—m)r’ =Er’.

As in the case of plane triangles, we can de-
rive relationships between the sides and angles of
spherical triangles. The easiest way to do this is
by inspecting certain coordinate transformations.

Suppose we have two rectangular coordinate
frames Oxyz and Ox’y’7’ (Fig. 2.4), such that
the x’y’z’ frame is obtained from the xyz frame
by rotating it around the x axis by an angle .

The position of a point P on a unit sphere is
uniquely determined by giving two angles. The
angle 1 is measured counterclockwise from the
positive x axis along the xy plane; the other an-
gle 6 tells the angular distance from the xy plane.

Fig. 2.3 1If the sides of a spherical triangle are extended
all the way around the sphere, they form another trian-
gle A/, antipodal and equal to the original triangle A. The
shaded area is the slice S(A)
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Fig.2.4 The location of a point P on the surface of a unit
sphere can be expressed by rectangular xyz coordinates or
by two angles, ¥ and 6. The x’y’z’ frame is obtained by
rotating the xyz frame around its x axis by an angle x

In an analogous way, we can define the angles '
and 0’, which give the position of the point P in
the x'y’z’ frame. The rectangular coordinates of
the point P as functions of these angles are:

X = cosyrcosf, x" =cosy’ cos’,

y =siny cos 6, vy =siny’cosd’, (2.3)

7z =sin6, 7/ =sinf’.

We also know that the dashed coordinates are ob-
tained from the undashed ones by a rotation in the
yz plane (Fig. 2.5):
x'=x,
y =ycosx +zsiny, (2.4)
7 = —ysiny +zcos x.
By substituting the expressions of the rectangular
coordinates (2.3) into (2.4), we have

cos Y’ cos@’ = cos Y cos 6,
siny’ cos@’ = siny cosé cos x + siné sin x,

sin@’ = — siny cos @ sin x + sin6 cos x.
(2.5)

In fact, these equations are quite sufficient for
all coordinate transformations we may encounter.

Fig. 2.5 The coordinates of the point P in the rotated
frame are x’ = x, y/ = ycos x + zsiny, 7 = zcosx —
ysin x

~N

Fig. 2.6 To derive triangulation formulas for the spher-
ical triangle ABC, the spherical coordinates v, 6, ¥’
and 6’ of the vertex C are expressed in terms of the sides
and angles of the triangle

However, we shall also derive the usual equations
for spherical triangles. To do this, we set up the
coordinate frames in a suitable way (Fig. 2.6).
The z axis points towards the vertex A and the
7/ axis, towards B. Now the vertex C corresponds
to the point P in Fig. 2.4. The angles v/, 6, ¥’, 6’
and x can be expressed in terms of the angles and
sides of the spherical triangle:

W =A—90°
¥ =90° — B,

0 =90° —b,
' =90° —a, X =c.
(2.6)
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Substitution into (2.5) gives

c0s(90° — B) cos(90° — a)
=cos(A —90°) cos(90° — b),
$in(90° — B) cos(90° — a)
= sin(A — 90°) cos(90° — b) cosc
+sin(90° — b) sinc,
sin(90° — a)
= —sin(A — 90°) cos(90° — b) sinc
+ sin(90° — b) cosc,
or
sin Bsina = sin Asinb,
cos Bsina = —cos Asinbcosc + cosbsinc,
cosa = cos Asinbsinc + cosbcosc.

2.7

Equations for other sides and angles are obtained
by cyclic permutations of the sides a, b, ¢ and the
angles A, B, C. For instance, the first equation
also yields

sinC sinb = sin B sinc,
sin A sinc = sin C sina.

All these variations of the sine formula can be
written in an easily remembered form:

sina

sinb sinc

— == (2.8)

sinA sinB sinC

If we take the limit, letting the sides a, b

and ¢ shrink to zero, the spherical triangle be-

comes a plane triangle. If all angles are expressed
in radians, we have approximately

1
cosa~1— —a’.
a 2a

sina ~ a,
Substituting these approximations into the sine
formula, we get the familiar sine formula of plane
geometry:

a b ¢
sinA  sinB  sinC’

The second equation in (2.7) is the sine-cosine
formula, and the corresponding plane formula is
a trivial one:

c=bcosA+acosB.

This is obtained by substituting the approxima-
tions of sine and cosine into the sine-cosine for-
mula and ignoring all quadratic and higher-order
terms. In the same way we can use the third equa-
tion in (2.7), the cosine formula, to derive the pla-
nar cosine formula:

a®>=b>+c* —2bccos A.

2.2 The Earth

A position on the Earth is usually given by two
spherical coordinates (although in some calcu-
lations rectangular or other coordinates may be
more convenient). If necessary, also a third coor-
dinate, e.g. the distance from the centre, can be
used.

The reference plane is the equatorial plane,
perpendicular to the rotation axis and intersecting
the surface of the Earth along the equator. Small
circles parallel to the equator are called paral-
lels of latitude. Semicircles from pole to pole
are meridians. The geographical longitude is the
angle between the meridian and the zero merid-
ian passing through Greenwich Observatory. We
shall use positive values for longitudes east of
Greenwich and negative values west of Green-
wich. Sign convention, however, varies, and neg-
ative longitudes are not used in maps; so it is usu-
ally better to say explicitly whether the longitude
is east or west of Greenwich.

The latitude is usually supposed to mean the
geographical latitude, which is the angle between
the plumb line and the equatorial plane. The lat-
itude is positive in the northern hemisphere and
negative in the southern one. The geographical
latitude can be determined by astronomical ob-
servations (Fig. 2.7): the altitude of the celestial
pole measured from the horizon equals the geo-
graphical latitude. (The celestial pole is the inter-
section of the rotation axis of the Earth and the
infinitely distant celestial sphere; we shall return
to these concepts a little later.)
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Celestial pole

Fig. 2.7 The latitude ¢ is obtained by measuring the alti-
tude of the celestial pole. The celestial pole can be imag-
ined as a point at an infinite distance in the direction of the
Earth’s rotation axis

Because the Earth is rotating, it is slightly flat-
tened. The exact shape is rather complicated, but
for most purposes it can by approximated by an
oblate spheroid, the short axis of which coincides
with the rotation axis (Sect. 7.6). In 1979 the
International Union of Geodesy and Geophysics
(IUGG) adopted the Geodetic Reference System
1980 (GRS-80), which is used when global ref-
erence frames fixed to the Earth are defined. The
GRS-80 reference ellipsoid has the following di-
mensions:

equatorial radius a = 6,378,137 m,
polar radius b =6,356,752 m,
flattening f=@—->b)/a

= 1/298.25722210.

The shape defined by the surface of the oceans,
called the geoid, differs from this spheroid at
most by about 100 m.

The angle between the equator and the nor-
mal to the ellipsoid approximating the true Earth
is called the geodetic latitude. Because the sur-
face of a liquid (like an ocean) is perpendicular
to the plumb line, the geodetic and geographical
latitudes are practically the same.

Fig.2.8 Due to the flattening of the Earth, the geographic
latitude ¢ and geocentric latitude ¢’ are different

Because of the flattening, the plumb line does
not point to the centre of the Earth except at the
poles and on the equator. An angle corresponding
to the ordinary spherical coordinate (the angle be-
tween the equator and the line from the centre to
a point on the surface), the geocentric latitude ¢’
is therefore a little smaller than the geographic
latitude ¢ (Fig. 2.8).

We now derive an equation between the geo-
graphic latitude ¢ and geocentric latitude ¢’, as-
suming the Earth is an oblate spheroid and the
geographic and geodesic latitudes are equal. The
equation of the meridional ellipse is

[\S)
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Y

The direction of the normal to the ellipse at
a point (x, y) is given by

dx a%y

tang = —— = — .
an¢ dy b2x

The geocentric latitude is obtained from

tang’ = y/x.

Hence

2

tang’ = 2—2tan¢ = (1-¢*)tang, (2.9)
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where

e=,/1—5b%/a?

is the eccentricity of the ellipse. The difference
A¢ = ¢ — ¢’ has a maximum 11.5’ at the latitude
45°.

Since the coordinates of celestial bodies in as-
tronomical almanacs are given with respect to the
centre of the Earth, the coordinates of nearby ob-
jects must be corrected for the difference in the
position of the observer, if high accuracy is re-
quired. This means that one has to calculate the
topocentric coordinates, centered at the observer.
The easiest way to do this is to use rectangular
coordinates of the object and the observer (Ex-
ample 2.6).

One arc minute along a meridian is called
a nautical mile. Since the radius of curvature
varies with latitude, increasing towards the poles,
the length of the nautical mile so defined would
depend on the latitude (1843 m on the equator,
1862 m at the poles). Therefore one nautical mile
has been defined to be equal to one minute of arc
at ¢ = 45°, whence 1 nautical mile = 1852 m.

2.3  The Celestial Sphere

The ancient universe was confined within a fi-
nite spherical shell. The stars were fixed to this
shell and thus were all equidistant from the Earth,
which was at the centre of the spherical universe.
This simple model is still in many ways as use-
ful as it was in antiquity: it helps us to easily un-
derstand the diurnal and annual motions of stars,
and, more important, to predict these motions in
arelatively simple way. Therefore we will assume
for the time being that all the stars are located on
the surface of an enormous sphere and that we
are at its centre. Because the radius of this celes-
tial sphere is practically infinite, we can neglect
the effects due to the changing position of the ob-
server, caused by the rotation and orbital motion
of the Earth. These effects will be considered later
in Sects. 2.9 and 2.10.

Since the distances of the stars are ignored,
we need only two coordinates to specify their di-
rections. Each coordinate frame has some fixed
reference plane passing through the centre of

Celestial
pole

a)
South
. S
Celestial
pole
N
North
w
b) West

Fig.2.9 (a) The apparent motions of stars during a night
as seen from latitude ¢ = 45°. (b) The same stars seen
from latitude ¢ = 10°

the celestial sphere and dividing the sphere into
two hemispheres along a great circle. One of the
coordinates indicates the angular distance from
this reference plane. There is exactly one great
circle going through the object and intersecting
this plane perpendicularly; the second coordinate
gives the angle between that point of intersection
and some fixed direction.

24  The Horizontal System

The most natural coordinate frame from the ob-
server’s point of view is the horizontal frame
(Fig. 2.9). Its reference plane is the tangent plane
of the Earth passing through the observer; this
horizontal plane intersects the celestial sphere
along the horizon. The point just above the ob-
server is called the zenith and the antipodal point
below the observer is the nadir. (These two points
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are the poles corresponding to the horizon.) Great
circles through the zenith are called verticals. All
verticals intersect the horizon perpendicularly.

By observing the motion of a star over the
course of a night, an observer finds out that it fol-
lows a track like one of those in Fig. 2.9. Stars rise
in the east, reach their highest point, or culminate,
on the vertical NZS, and set in the west. The ver-
tical NZS is called the meridian. North and south
directions are defined as the intersections of the
meridian and the horizon.

One of the horizontal coordinates is the alti-
tude or elevation, a, which is measured from the
horizon along the vertical passing through the ob-
ject. The altitude lies in the range [—90°, +90°];
it is positive for objects above the horizon and
negative for the objects below the horizon. The
zenith distance, or the angle between the object
and the zenith, is obviously

7=90° —a. (2.10)

The second coordinate is the azimuth, A; it
is the angular distance of the vertical of the ob-
ject from some fixed direction. Unfortunately,
in different contexts, different fixed directions
are used; thus it is always advisable to check
which definition is employed. The azimuth is
usually measured from the north or south, and
though clockwise is the preferred direction, coun-
terclockwise measurements are also occasionally
used. In geography, navigation and many other
fields, the azimuth is measured from the north.
In this book we have adopted a fairly common
astronomical convention, measuring the azimuth
clockwise from the south. Its values are usually
normalised between 0° and 360° (or —180°-—
180°). The reason for this definition is that some
other important angles are also measured from
the south.

In Fig. 2.9a we can see the altitude and az-
imuth of three stars at some instant. As a star
moves along its daily track, both of its coordi-
nates will change. Another difficulty with this co-
ordinate frame is its local character. In Fig. 2.9b
we have the same stars, but the observer is now
further south. We can see that the coordinates of
the same star at the same moment are different

for different observers. Since the horizontal co-
ordinates are time and position dependent, they
cannot be used, for instance, in star catalogues.

2.5 The Equatorial System

The direction of the rotation axis of the Earth re-
mains almost constant and so does the equato-
rial plane perpendicular to this axis. Therefore the
equatorial plane is a suitable reference plane for
a coordinate frame that has to be independent of
time and the position of the observer.

The intersection of the celestial sphere and
the equatorial plane is a great circle, which is
called the equator of the celestial sphere. The
north pole of the celestial sphere is one of the
poles corresponding to this great circle. It is also
the point in the northern sky where the exten-
sion of the Earth’s rotational axis meets the ce-
lestial sphere. The celestial north pole is at a dis-
tance of about one degree (which is equivalent to
two full moons) from the moderately bright star
Polaris. The meridian always passes through the
north pole; it is divided by the pole into north and
south meridians.

The angular separation of a star from the equa-
torial plane is not affected by the rotation of the
Earth. This angle is called the declination §.

Stars seem to revolve around the pole once ev-
ery day (Fig. 2.10). To define the second coordi-
nate, we must again agree on a fixed direction,
unaffected by the Earth’s rotation. From a mathe-
matical point of view, it does not matter which
point on the equator is selected. However, for
later purposes, it is more appropriate to employ
a certain point with some valuable properties,
which will be explained in the next section. This
point is called the vernal equinox. Because it used
to be in the constellation Aries (the Ram), it is
also called the first point of Aries ant denoted
by the sign of Aries, 7. Now we can define the
second coordinate as the angle from the vernal
equinox measured along the equator. This angle
is the right ascension o (or R.A.) of the object,
measured counterclockwise from 7.

Since declination and right ascension are in-
dependent of the position of the observer and the
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motions of the Earth, they can be used in star
maps and catalogues. As will be explained later,
in many telescopes one of the axes (the hour axis)
is parallel to the rotation axis of the Earth. The
other axis (declination axis) is perpendicular to
the hour axis. Declinations can be read imme-
diately on the declination dial of the telescope.
But the zero point of the right ascension seems
to move in the sky, due to the diurnal rotation of
the Earth. So we cannot use the right ascension to
find an object unless we know the direction of the
vernal equinox.

Since the south meridian is a well-defined line
in the sky, we use it to establish a local coordinate
corresponding to the right ascension. The hour
angle h is measured clockwise from the meridian.
The hour angle of an object is not a constant, but
grows at a steady rate, due to the Earth’s rotation.
The hour angle of the vernal equinox is called the

Fig. 2.10 At night, stars seem to revolve around the ce-
lestial pole. The altitude of the pole from the horizon
equals the latitude of the observer. (Photo Aimo Sillanpéa
and Pasi Nurmi)

sidereal time ©. Figure 2.11 shows that for any
object,

©=h+a, @2.11)

where / is the object’s hour angle and « its right
ascension.

Since hour angle and sidereal time change
with time at a constant rate, it is practical to ex-
press them in units of time. Also the closely re-
lated right ascension is customarily given in time
units. Thus 24 hours equals 360 degrees, 1 hour =
15 degrees, 1 minute of time = 15 minutes of arc,
and so on. All these quantities are in the range
[0 h, 24 h). This custom also explains the name
hour circle; it is a great circle along which the
hour angle (or right ascension) is constant.

In practice, the sidereal time can be readily de-
termined by pointing the telescope to an easily
recognisable star and reading its hour angle on
the hour angle dial of the telescope. The right as-
cension found in a catalogue is then added to the
hour angle, giving the sidereal time at the moment
of observation. For any other time, the sidereal
time can be evaluated by adding the time elapsed
since the observation. If we want to be accurate,
we have to use a sidereal clock to measure time
intervals. A sidereal clock runs 3 min 56.56 s fast
a day as compared with an ordinary solar time

Celestial pole

Fig. 2.11 The relation between the right ascension «,
hour angle / and sidereal time ©. The right ascension is
measured counterclockwise from the vernal equinox, the
hour angle and sidereal time clockwise from the South
meridian. The sidereal time is the hour angle the vernal
equinox
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Fig. 2.12 The nautical triangle for deriving transforma-
tions between the horizontal and equatorial frames

clock:

24 h solar time

=24 h 3 min 56.56 s sidereal time. (2.12)

The reason for this is the orbital motion of the
Earth: stars seem to move faster than the Sun
across the sky; hence, a sidereal clock must run
faster. (This is further discussed in Sect. 2.13.)

Transformations between the horizontal and
equatorial frames are easily obtained from spher-
ical trigonometry. Comparing Figs. 2.6 and 2.12,
we find that we must make the following substi-
tutions into (2.5):

Y =90°— A,

(2.13)
W' =90° —h,

Xx =90° — ¢.

The angle ¢ in the last equation is the altitude of
the celestial pole, or the latitude of the observer.
Making the substitutions, we get

sinh cos$ = sin A cosa,
coshcosd =cos Acosasing + sinacos ¢,

sind = — cos Acosacos ¢ + sinasin¢.
(2.14)

The inverse transformation is obtained by sub-
stituting

Y =90° —h, 0 =34,
Y =90°— A, 0 =a, (2.15)
x =—(90°—¢),

whence

sin A cosa = sinh cos§,
cos Acosa = coshcosdsing — sind cos ¢,

sina = cosh cosd cos¢ + sind sin¢.
(2.16)

Since the altitude and declination are in the
range [—90°, +90°], it suffices to know the sine
of one of these angles to determine the other an-
gle unambiguously. Azimuth and right ascension,
however, can have any value from 0° to 360° (or
from O h to 24 h), and to solve for them, we have
to know both the sine and cosine to choose the
correct quadrant.

The altitude of an object is greatest when it
is on the south meridian (the great circle arc be-
tween the celestial poles containing the zenith).
At that moment (called upper culmination, or
transit) its hour angle is O h. At the lower culmi-
nation the hour angle is 4 = 12 h. When 7 =0h,
we get from the last equation in (2.16)

sina = cos 4 cos ¢ + sind sin ¢
=cos(¢ — §) =sin(90° — ¢ + 5).

Thus the altitude at the upper culmination is

90° — ¢ + 5, if the object culminates
south of zenith,
dmax = . . .
90° 4+ ¢ — 8, if the object culminates

north of zenith.
2.17)
The altitude is positive for objects with & >
¢ — 90°. Objects with declinations less than ¢ —
90° can never be seen at the latitude ¢. On the
other hand, when & = 12 h we have

sina = — cos 8 cos ¢ + sin é sin ¢

= —cos(8 + ¢) =sin(8 + ¢ — 90°),
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and the altitude at the lower culmination is

amin =8 + ¢ — 90°. (2.18)
Stars with § > 90° — ¢ will never set. For exam-
ple, in Helsinki (¢ =~ 60°), all stars with a decli-
nation higher than 30° are such circumpolar stars.
And stars with a declination less than —30° can
never be observed there.

We shall now study briefly how the («, §) fra-
me can be established by observations. Suppose
we observe a circumpolar star at its upper and
lower culmination (Fig. 2.13). At the upper tran-
sit, its altitude is amax = 90° — ¢ + § and at the
lower transit, dmin = 8 + ¢ —90°. Eliminating the
latitude, we get

8= %(amin + amax)- (2.19)
Thus we get the same value for the declination,
independent of the observer’s location. Therefore
we can use it as one of the absolute coordinates.
From the same observations, we can also deter-
mine the direction of the celestial pole as well as
the latitude of the observer. After these prepara-
tions, we can find the declination of any object by
measuring its distance from the pole.

The equator can be now defined as the great
circle all of whose points are at a distance of 90°
from the pole. The zero point of the second co-
ordinate (right ascension) can then be defined as
the point where the Sun seems to cross the equa-
tor from south to north.

In practice the situation is more complicated,
since the direction of Earth’s rotation axis changes

Fig. 2.13 The altitude of a circumpolar star at upper and
lower culmination

due to perturbations. Therefore the equatorial co-
ordinate frame is nowadays defined using cer-
tain standard objects the positions of which
are known very accurately. The best accuracy
is achieved by using the most distant objects,
quasars (Sect. 19.7), which remain in the same
direction over very long intervals of time.

2.6 Rising and Setting Times

From the last equation (2.16), we find the hour
angle i of an object at the moment its altitude
is a:

sina

cosh = —tandtan¢ + (2.20)

cos§cos¢

This equation can be used for computing rising
and setting times. Then a = 0 and the hour an-
gles corresponding to rising and setting times are
obtained from

cosh = —tanédtan¢. (2.21)

If the right ascension « is known, we can use
(2.11) to compute the sidereal time . (Later, in
Sect. 2.14, we shall study how to transform the
sidereal time to ordinary time.)

If higher accuracy is needed, we have to cor-
rect for the refraction of light caused by the at-
mosphere of the Earth (see Sect. 2.9). In that
case, we must use a small negative value for a
in (2.20). This value, the horizontal refraction, is
about —34/.

The rising and setting times of the Sun given
in almanacs refer to the time when the upper
edge of the Solar disk just touches the horizon.
To compute these times, we must set a = —50’
(=-34 —16)).

Also for the Moon almanacs give rising and
setting times of the upper edge of the disk. Since
the distance of the Moon varies considerably, we
cannot use any constant value for the radius of the
Moon, but it has to be calculated separately each
time. The Moon is also so close that its direction
with respect to the background stars varies due to
the rotation of the Earth. Thus the rising and set-
ting times of the Moon are defined as the instants
when the altitude of the Moon is —34' — s + 7,
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Fig. 2.14 The ecliptic or the apparent orbit of the Sun
resembles somewhat a sine curve in the equatorial coordi-
nate frame. The ecliptic passes through 13 constellations.
Since many of them have been named after animals, the
neighbourhood of the ecliptic is called the zodiac. As-
trologers divide the ecliptic into 12 equal signs of 30°

where s is the apparent radius (15.5" on the aver-
age) and 7 the parallax (57 on the average). The
latter quantity is explained in Sect. 2.9.

Finding the rising and setting times of the
Sun, planets and especially the Moon is compli-
cated by their motion with respect to the stars.
We can use, for example, the coordinates for the
noon to calculate estimates for the rising and set-
ting times, which can then be used to interpolate
more accurate coordinates for the rising and set-
ting times. When these coordinates are used to
compute new times a pretty good accuracy can
be obtained. The iteration can be repeated if even
higher precision is required.

2.7 The Ecliptic System

The orbital plane of the Earth, the ecliptic, is the
reference plane of another important coordinate
frame. The ecliptic can also be defined as the
great circle on the celestial sphere described by
the Sun in the course of one year. This frame is
used mainly for planets and other bodies of the
solar system. The orientation of the Earth’s equa-
torial plane remains invariant, unaffected by an-
nual motion. In spring, the Sun appears to move
from the southern hemisphere to the northern one
(Fig. 2.14). The time of this remarkable event
as well as the direction to the Sun at that mo-
ment are called the vernal equinox. At the vernal

each. (Ophiuchus is unknown to them.) Due to the preces-
sion of the coordinate frame the astrological signs and the
constellations with the same name are no more aligned.
Also the sizes of the actual constellations are quite differ-
ent

Autumnal equinox

Summer
solstice

Winter
solstice

equinox Ecliptic

Fig. 2.15 The ecliptic geocentric (X, 8) and heliocentric
(A, B') coordinates are equal only if the object is very
far away. The geocentric coordinates depend also on the
Earth’s position in its orbit

equinox, the Sun’s right ascension and declina-
tion are zero. The equatorial and ecliptic planes
intersect along a straight line directed towards the
vernal equinox. Thus we can use this direction as
the zero point for both the equatorial and ecliptic
coordinate frames. The point opposite the vernal
equinox is the autumnal equinozx, it is the point at
which the Sun crosses the equator from north to
south.

The ecliptic latitude B is the angular distance
from the ecliptic; it is in the range [—90°, +90°].
The other coordinate is the ecliptic longitude A,
measured counterclockwise from the vernal
equinox (Fig. 2.15).

Transformation equations between the equa-
torial and ecliptic frames can be derived analo-
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gously to (2.14) and (2.16):

sin A cos 8 =sind sine + cosd cose sina,

CcosAcos 8 =cosdcosa, (2.22)

sin 8 =sindcose — cos§sine sina,

sino cos§ = —sin B sine 4 cos fcose sinA,

COS o cosd = cosAcos g, (2.23)

sin§ = sin S cos e + cos Bsing sinA.

The angle ¢ appearing in these equations is
the obliquity of the ecliptic, or the angle between
the equatorial and ecliptic planes. Its value is
roughly 23°26’ (a more accurate value is given
in Box 2.1).

Depending on the problem to be solved, we
may encounter heliocentric (origin at the Sun),
geocentric (origin at the centre of the Earth) or
topocentric (origin at the observer) coordinates.
For very distant objects the differences are neg-
ligible, but not for bodies of the solar system.
To transform heliocentric coordinates to geocen-
tric coordinates or vice versa, we must also know
the distance of the object. This transformation is
most easily accomplished by computing the rect-
angular coordinates of the object and the new ori-
gin, then changing the origin and finally evaluat-
ing the new latitude and longitude from the rect-
angular coordinates (see Examples 2.5 and 2.6).

2.8 The Galactic Coordinates

For studies of the Milky Way Galaxy, the most
natural reference plane is the plane of the Milky
Way (Fig. 2.16). Since the Sun lies very close
to that plane, we can put the origin at the Sun.
The galactic longitude | is measured counter-
clockwise (like right ascension) from the direc-
tion of the centre of the Milky Way (in Sagit-
tarius, o« = 17 h 45.7 min, § = —29°00’). The

Celestial
pole
Galactic b

centre I/l)/” Sun

Fig.2.16 The galactic coordinates / and b

galactic latitude b is measured from the galac-
tic plane, positive northwards and negative south-
wards. This definition was officially adopted only
in 1959, when the direction of the galactic cen-
tre was determined from radio observations ac-
curately enough. The old galactic coordinates !
and b' had the intersection of the equator and the
galactic plane as their zero point.

The galactic coordinates can be obtained from
the equatorial ones with the transformation equa-
tions

sin(INy — ) cosb = cos § sin(o — arp),
cos(In —1)cosb = —cos 6 sindp cos(o — ap)
+ siné cos p,
sinb = cos § cos §p cos(o — ap)
+ siné sin 8p,

(2.24)

where the direction of the Galactic north pole is
ap =12 h 51.4 min, §p = 27°08’, and the galactic
longitude of the celestial pole, Iy = 123.0°.

2.9  Perturbations of Coordinates

Even if a star remains fixed with respect to the
Sun, its coordinates can change, due to several
disturbing effects. Naturally its altitude and az-
imuth change constantly because of the rotation
of the Earth, but even its right ascension and dec-
lination are not quite free from perturbations.

Precession The Earth is not quite spherical but
slightly flattened. Since most of the members of
the solar system orbit close to the ecliptic, they
tend to pull the equatorial bulge of the Earth
towards it. Most of this “flattening” torque is
caused by the Moon and the Sun. But the Earth
is rotating and therefore the torque cannot change
the inclination of the equator relative to the eclip-
tic. Instead, the rotation axis turns in a direction
perpendicular to the axis and the torque, thus de-
scribing a cone once in roughly 26,000 years.
This slow turning of the rotation axis is called
precession (Fig. 2.17). Because of precession, the
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Fig.2.17 Due to

precession the celestial
pole moves and makes a
full revolution in about
26,000 years. For a while it
is still approaching Polaris,
but will then begin to
recede. In about 14,000 it I
will be close to Vega. P
Somewhat over 2000 years i
BC the pole was close to
the « star of Drace, Thuban

vernal equinox moves along the ecliptic clock-
wise about 50 seconds of arc every year, thus in-
creasing the ecliptic longitudes of all objects at
the same rate. At present the rotation axis points
about one degree away from Polaris, but after
12,000 years, the celestial pole will be roughly in
the direction of Vega. The changing ecliptic lon-
gitudes also affect the right ascension and decli-
nation. Thus we have to know the instant of time,
or epoch, for which the coordinates are given.

Currently most maps and catalogues use the
epoch J2000.0, which means the beginning of
the year 2000, or, to be exact, the noon of Jan-
uary 1, 2000, or the Julian date 2,451,545.0 (see
Sect. 2.15).

Let us now derive expressions for the changes
in right ascension and declination. Taking the last
transformation equation in (2.23),

sind = cos e sin 8 + sing cos BsinA,
and differentiating, we get
cos§ds =sinecos BcosAdA.

Applying the second equation in (2.22) to the
right-hand side, we have, for the change in dec-

lination,
dé =dAsinecosca. (2.25)

By differentiating the equation
CcoS® cosd = cos B COSA,
we get
—sino cos § do — cosa sind dé
= —cosfBsinAdA;

and, by substituting the previously obtained ex-
pression for d§ and applying the first equation
(2.22), we have

sin cos § do

= dx(cos Bsin — sine cos?

asiné)
=dx (sin dsine 4 cosd cose sina
—sine cos® asin ).
Simplifying this, we get

da = dA(sina sinetand + cose). (2.26)

If dA is the annual increment of the ecliptic lon-
gitude (about 50), the precessional changes in
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Table 2.1 Precession constants m and n. Here, “a” means
a tropical year

Epoch 'm n

1800 3.07048 s/a | 1.33703 s/a= | 20.0554"/a
1850 3.07141 1.33674 20.0511
1900 3.07234 1.33646 20.0468
1950 3.07327 1.33617 20.0426
2000 3.07419 1.33589 20.0383

right ascension and declination in one year are
thus

dé =dAsinecosa,
2.27)
do =dA(sinesinatand + cose).

These expressions are usually written in the form

dé =ncosa,
(2.28)
do =m +nsinatand,

where

m =dAcose,
(2.29)
n=d\sine

are the precession constants. Since the obliq-
uity of the ecliptic is not exactly a constant but
changes with time, m and n also vary slowly with
time. However, this variation is so slow that usu-
ally we can regard m and n as constants unless
the time interval is very long. The values of these
constants for some epochs are given in Table 2.1.
For intervals longer than a few decades a more
rigorous method should be used. Its derivation ex-
ceeds the level of this book, but the necessary for-
mulas are given in Box 2.1.

Nutation The Moon’s orbit is inclined with re-
spect to the ecliptic, resulting in precession of
its orbital plane. One revolution takes 18.6 years,
producing perturbations with the same period in
the precession of the Earth. This effect, nutation,
changes ecliptic longitudes as well as the oblig-
uity of the ecliptic (Fig. 2.18). Calculations are
now much more complicated, but fortunately nu-
tational perturbations are relatively small, only
fractions of an arc minute. Thus they can often be

Ecliptic north pole

Celestial

—al pole

&

Fig. 2.18 Due to precession the rotation axis of the Earth
turns around the ecliptic north pole. Nutation is the small
wobble disturbing the smooth precessional motion. In this
figure the magnitude of the nutation is highly exaggerated

calculated using the simple formulas of Box 2.1
or just omitted.

Parallax If we observe an object from different
points, we see it in different directions. The dif-
ference of the observed directions (as well as the
whole phenomenon) is called the parallax. Since
the amount of parallax depends on the distance
of the observer from the object, we can utilise
the parallax to measure distances. Human stereo-
scopic vision is based (at least to some extent)
on this effect. For astronomical purposes we need
much longer baselines than the distance between
our eyes (about 7 cm). Appropriately large and
convenient baselines are the radius of the Earth
and the radius of its orbit.

Distances to the nearest stars can be deter-
mined from the annual parallax, which is the an-
gle subtended by the radius of the Earth’s orbit
(called the astronomical unit, au) as seen from the
star. (We shall discuss this further in Sect. 2.10.)

By diurnal parallax we mean the change of
direction due to the daily rotation of the Earth. In
addition to the distance of the object, the diurnal
parallax also depends on the latitude of the ob-
server. If we talk about the parallax of a body in
our solar system, we always mean the angle sub-
tended by the Earth’s equatorial radius (6378 km)
as seen from the object (Fig. 2.19). This equals
the apparent shift of the object with respect to the
background stars seen by an observer at the equa-
tor if (s)he observes the object moving from the
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Fig. 2.19 The horizontal
parallax 7 of an object is R

the angle subtended by the

Earth’s equatorial radius as
seen from the object

Fig. 2.20 The effect of aberration on the apparent direc-
tion of an object. (a) Observer at rest. (b) Observer in mo-
tion

horizon to the zenith. The parallax of the Moon,
for example, is about 57', and that of the Sun
8.79".

In astronomy parallax may also refer to dis-
tance in general, even if it is not measured using
the shift in the observed direction.

Aberration Because of the finite speed of light,
an observer in motion sees an object shifted in
the direction of her/his motion (Fig. 2.20). This
change of apparent direction is called the aber-
ration. To derive the exact value we have to use
the special theory of relativity, but for practical
purposes it suffices to use the approximate value
[a] =rad,

a="sing, (2.30)
C

Fig. 2.21 A telescope is pointed in the true direction of
a star. It takes a time ¢t = [/c for the light to travel the
length of the telescope. The telescope is moving with ve-
locity v, which has a component v siné, perpendicular to
the direction of the light beam. The beam will hit the bot-
tom of the telescope displaced from the optical axis by
a distance x = tvsinf =1I(v/c)sinf. Thus the change of
direction in radians isa = x// = (v/c) sin@

where v is the velocity of the observer, ¢ is the
speed of light and 6 is the angle between the
true direction of the object and the velocity vector
of the observer (Fig 2.21). The greatest possible
value of the aberration due to the orbital motion
of the Earth, v/c, called the aberration constant,
is 21”. The maximal shift due to the Earth’s ro-
tation, the diurnal aberration constant, is much
smaller, about 0.3”.

Refraction Since light is refracted by the at-
mosphere, the direction of an object differs from
the true direction by an amount depending on the
atmospheric conditions along the line of sight.
Since this refraction varies with atmospheric
pressure and temperature, it is very difficult to
predict it accurately. However, an approximation
good enough for most practical purposes is eas-
ily derived. If the object is not too far from the
zenith, the atmosphere between the object and
the observer can be approximated by a stack of
parallel planar layers, each of which has a certain
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index of refraction n; (Fig. 2.22). Outside the at-
mosphere, we have n = 1.

Let the true zenith distance be z and the appar-
ent one, ¢. Using the notations of Fig. 2.22, we
obtain the following equations for the boundaries
of the successive layers:

sinz = ny sin zy,

npsinzpy =nysinzy,
nysinz| =ngsing.
Simplifying this set of equations we get
(2.31)

sinz =ngsin¢.

When the refraction angle R = z — ¢ is small and
is expressed in radians, we have

nosin¢ =sinz =sin(R + ¢)
=sin Rcos¢ + cos Rsin¢
~ Rcos¢ +sin¢.
Thus we get
R =(np— D)tang,

[R] =rad. (2.32)

The index of refraction depends on the density
of the air, which further depends on the pressure

S

n=ng_g

Fig. 2.22 Refraction of a light ray travelling through the
atmosphere. If the altitude is not very low we can think
that the atmosphere consists of planar layers each of which
has its own index of refraction. Outside the atmosphere the
index is n = 1 and increases towards the ground

and temperature. When the altitude is over 15°,
we can use an approximate formula

0.00452° tan(90° — a), (2.33)

R= ——
213+T
where a is the altitude in degrees, T tempera-
ture in degrees Celsius, and P the atmospheric
pressure in hectopascals (or, equivalently, in mil-
libars). At lower altitudes the curvature of the at-
mosphere must be taken into account. An approx-
imate formula for the refraction is then

R P 0.1594 4+ 0.0196a + 0.00002a2
T 2134 T 1 +0.505a + 0.084542
(2.34

These formulas are widely used, although they
are against the rules of dimensional analysis.
To get correct values, all quantities must be ex-
pressed in correct units. Figure 2.23 shows the
refraction under different conditions evaluated
from these formulas.

Altitude is always (except very close to zenith)
increased by refraction. On the horizon the change
is about 34, which is slightly more than the di-
ameter of the Sun. When the lower limb of the
Sun just touches the horizon, the Sun has in real-
ity already set.

Light coming from the zenith is not refracted
at all if the boundaries between the layers are hor-
izontal. Under some climatic conditions, a bound-
ary (e.g. between cold and warm layers) can be
slanted, and in this case, there can be a small

R

50\ ---- P=1050 hPa, T=—30°C

40l N —— P= 950 hPa, T=+30°C
N e P= 700 hPa, T=0°C

30

201

10’

Fig. 2.23 Refraction at different altitudes. The refraction
angle R tells how much higher the object seems to be com-
pared with its true altitude a. Refraction depends on the
density and thus on the pressure and temperature of the
air. The upper curves give the refraction at sea level dur-
ing rather extreme weather conditions. At the altitude of
2.5 kilometers the average pressure is only 700 hPa, and
thus the effect of refraction smaller (lowest curve)
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zenith refraction, which is of the order of a few
arc seconds.

Stellar positions given in star catalogues are
mean places, from which the effects of parallax,
aberration and nutation have been removed. The
mean place of the date (i.e. at the observing time)
is obtained by correcting the mean place for the
proper motion of the star (Sect. 2.10) and preces-
sion. The apparent place is obtained by correct-
ing this place further for nutation, parallax and
aberration. There is a catalogue published annu-
ally that gives the apparent places of certain ref-
erences stars at intervals of a few days. These po-
sitions have been corrected for precession, nuta-
tion, parallax and annual aberration. The effects
of diurnal aberration and refraction are not in-
cluded because they depend on the location of the
observer.

2.10 Positional Astronomy

The position of a star can be measured either with
respect to some reference stars (relative astrome-
try) or with respect to a fixed coordinate frame
(absolute astrometry).

Absolute coordinates are usually determined
using a meridian circle, which is a telescope
that can be turned only in the meridional plane
(Fig. 2.27). It has only one axis, which is aligned
exactly in the east-west direction. Since all stars
cross the meridian in the course of a day, they all
come to the field of the meridian circle at some
time or other. When a star culminates, its altitude
and the time of the transit are recorded. If the time
is determined with a sidereal clock, the sidereal
time immediately gives the right ascension of the
star, since the hour angle is # = 0 h. The other
coordinate, the declination &, is obtained from the
altitude:

d=a—(90°—¢),

where a is the observed altitude and ¢ is the geo-
graphic latitude of the observatory.

Relative coordinates are measured on photo-
graphic plates (Fig. 2.25) or CCD images con-
taining some known reference stars. The scale of
the plate as well as the orientation of the coordi-

1AU

Fig. 2.24 The trigonometric parallax 7 of a star S is the
angle subtended by the radius of the orbit of the Earth, or
one astronomical unit, as seen from the star

nate frame can be determined from the reference
stars. After this has been done, the right ascen-
sion and declination of any object in the image
can be calculated if its coordinates in the image
are measured.

All stars in a small field are almost equally af-
fected by the dominant perturbations, precession,
nutation, and aberration. The much smaller effect
of parallax, on the other hand, changes the rela-
tive positions of the stars.

The shift in the direction of a star with respect
to distant background stars due to the annual mo-
tion of the Earth is called the trigonometric par-
allax of the star. It gives the distance of the star:
the smaller the parallax, the farther away the star
is. Trigonometric parallax is, in fact, the only di-
rect method we currently have of measuring dis-
tances to stars. Later we shall be introduced to
some other, indirect methods, which require cer-
tain assumptions on the motions or structure of
stars. The same method of triangulation is em-
ployed to measure distances of earthly objects.
To measure distances to stars, we have to use the
longest baseline available, the diameter of the or-
bit of the Earth.

During the course of one year, a star will ap-
pear to describe a circle if it is at the pole of the
ecliptic, a segment of line if it is in the ecliptic, or
an ellipse otherwise. The semimajor axis of this
ellipse is called the parallax of the star. It is usu-
ally denoted by . It equals the angle subtended
by the radius of the Earth’s orbit as seen from the
star (Fig. 2.24).
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The unit of distance used in astronomy is par-
sec (pc). At a distance of one parsec, one astro-
nomical unit subtends an angle of one arc sec-
ond. Since one radian is about 206,265”, 1 pc
equals 206,265 au. Furthermore, because 1 au =
1.496 x 10" m, 1 pc ~ 3.086 x 10'® m. If the
parallax is given in arc seconds, the distance is
simply

r=1/n, [rl=pc, [x]l=". (2.35)

In popular astronomical texts, distances are
usually given in light-years, one light-year be-
ing the distance light travels in one year, or 9.5 x
10'> m. Thus one parsec is about 3.26 light-years.

The first parallax measurement was accom-
plished by Friedrich Wilhelm Bessel (1784—1846)
in 1838. He found the parallax of 61 Cygni to be
0.3”. The nearest star Proxima Centauri has a par-
allax of 0.762” and thus a distance of 1.31 pc.

In addition to the motion due to the annual par-
allax, many stars seem to move slowly in a direc-
tion that does not change with time. This effect is
caused by the relative motion of the Sun and the
stars through space; it is called the proper motion.
The appearance of the sky and the shapes of the
constellations are constantly, although extremely
slowly, changed by the proper motions of the stars
(Fig. 2.26).

The velocity of a star with respect to the Sun
can be divided into two components (Fig. 2.28),
one of which is directed along the line of sight
(the radial component or the radial velocity), and
the other perpendicular to it (the tangential com-
ponent). The tangential velocity results in the
proper motion, which can be measured by taking
pictures at intervals of several years or decades.
The proper motion p has two components, one
giving the change in declination ps and the other,
in right ascension, y cosé. The coefficient cos 8
is used to correct the scale of right ascension:
hour circles (the great circles with & = constant)
approach each other towards the poles, so the co-
ordinate difference must be multiplied by cosé
to obtain the true angular separation. The total
proper motion is

p=1/p2cos 8+ u3.

(2.36)

The greatest known proper motion belongs to
Barnard’s Star, which moves across the sky at the
enormous speed of 10.3 arc seconds per year. It
needs less than 200 years to travel the diameter
of a full moon.

In order to measure proper motions, we must
observe stars for a long time. The radial compo-
nent, on the other hand, is readily obtained from
a single observation, thanks to the Doppler effect.
By the Doppler effect we mean the change in fre-
quency and wavelength of radiation due to the ra-
dial velocity of the radiation source. The same ef-
fect can be observed, for example, in the sound
of an ambulance, the pitch being higher when the
ambulance is approaching and lower when it is
receding.

The formula for the Doppler effect for small
velocities can be derived as in Fig. 2.29. The
source of radiation transmits electromagnetic
waves, the period of one cycle being 7. In time T,
the radiation approaches the observer by a dis-
tance s = c¢T, where ¢ is the speed of propa-
gation. During the same time, the source moves
with respect to the observer a distance s’ = vT,
where v is the speed of the source, positive for
a receding source and negative for an approach-
ing one. We find that the length of one cycle, the
wavelength X, equals

r=s+s =cT +vT.

If the source were at rest, the wavelength of its
radiation would be Ao = ¢T. The motion of the
source changes the wavelength by an amount

Ar=A—Ag=cT +vT —cT =T,
and the relative change AA of the wavelength is
AL v
— = (2.37)
Ao c
This is valid only when v < c. For very high ve-
locities, we must use the relativistic formula

Ar [T +v/c !
M \Vl-v/e

These formulas are valid only for electromag-
netic radiation. The Doppler shift of e.g. sound

(2.38)
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Fig. 2.25 (a) A plate photographed for the Carte du Ciel
project in Helsinki on November 21, 1902. The centre of
the field is at @ = 18 h 40 min, § = 46°, and the area is
2° x 2°. Distance between coordinate lines (exposed sep-
arately on the plate) is 5 minutes of arc. (b) The framed
region on the same plate. (¢) The same area on a plate

taken on November 7, 1948. The bright star in the lower
right corner (SAO 47747) has moved about 12 seconds
of arc. The brighter, slightly drop-shaped star to the left
is a binary star (SAO 47767); the separation between its
components is 8"
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a) j b) ] c) 7
Fig. 2.26 Proper motions of stars slowly change the appearance of constellations. (a) The Big Dipper during the last
ice age 30,000 years ago, (b) nowadays, and (c) after 30,000 years

Fig. 2.27 Astronomers discussing observations with the
transit circle of Helsinki Observatory in 1904

waves is different depending on the motion of the
source or the observer.

In astronomy the Doppler effect can be seen
in stellar spectra, in which the spectral lines are
often displaced towards the blue (shorter wave-
lengths) or red (longer wavelengths) end of the
spectrum. A blueshift means that the star is ap-
proaching, while a redshift indicates that it is re-
ceding.

The displacements due to the Doppler effect
are usually very small. In order to measure them,
a reference spectrum is exposed on the plate next
to the stellar spectrum. Now that CCD-cameras
have replaced photographic plates, separate cal-

4

Fig. 2.28 The radial and tangential components, v, and
v, of the velocity v of a star. The latter component is ob-
served as proper motion
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Fig. 2.29 The wavelength of radiation increases if the
source is receding

ibration exposures of reference spectra are taken
to determine the wavelength scale (Sect. 3.3). The
lines in the reference spectrum are produced by
a light source at rest in the laboratory. If the ref-
erence spectrum contains some lines found also
in the stellar spectrum, the displacements can be
measured.

Also the spectra of distant galaxies show red-
shifts, but only a part of that is due to the Doppler
effect. Instead, the redshifts are caused by the ex-
pansion of the Universe (Chap. 20). Also, gravi-
tational fields cause redshifts as predicted by the
general relativity (Appendix B).

Displacements of spectral lines give the ra-
dial velocity v, of the star, and the proper mo-
tion u can be measured from photographic plates
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or CCD images. To find the tangential velocity v,
we have to know the distance r, obtainable from
e.g. parallax measurements. Tangential velocity
and proper motion are related by

Uy = Ur. (2.39)

If w is given in arc seconds per year and r in
parsecs we have to make the following unit trans-
formations to get v in km/s:

1 rad = 206,265", 1 year =3.156 x 107 s,

1 pc =3.086 x 10'3 km.

Hence
ve=4.74 ur, [v]=km/s,
B (2.40)
[ul="/a, [r]=pec.
The total velocity v of the star is then
v=1/v2+ v (2.41)

2.11 Constellations

At any one time, about 1000-1500 stars can be
seen in the sky (above the horizon). Under ideal
conditions, the number of stars visible to the
naked eye can be as high as 3000 on a hemi-
sphere, or 6000 altogether. Some stars seem to
form figures vaguely resembling something; for
ages they have been ascribed to various mytho-
logical and other animals. This grouping of stars
into constellations is a product of human imagi-
nation without any physical basis. Different cul-
tures have different constellations, depending on
their mythology, history and environment.

About half of the shapes and names of the
constellations we are familiar with date back
to Mediterranean antiquity. But the names and
boundaries were far from unambiguous as late as
the 19th century. Therefore the International As-
tronomical Union (IAU) confirmed fixed bound-
aries at its 1928 meeting.

The official boundaries of the constellations
were established along lines of constant right as-
cension and declination for the epoch 1875. Dur-
ing the time elapsed since then, precession has

noticeably turned the equatorial frame. However,
the boundaries remain fixed with respect to the
stars. So a star belonging to a constellation will
belong to it forever (unless it is moved across the
boundary by its proper motion).

The names of the 88 constellations confirmed
by the IAU are given in Table C.21 at the end of
the book. The table also gives the abbreviation of
the Latin name, its genitive (needed for names of
stars) and the English name.

In his star atlas Uranometria (1603) Johannes
Bayer started the current practice to denote the
brightest stars of each constellation by Greek let-
ters. The brightest star is usually « (alpha), e.g.
Deneb in the constellation Cygnus is « Cygni,
which is abbreviated as « Cyg. The second bright-
est star is B (beta), the next one y (gamma) and
so on. There are, however, several exceptions to
this rule; for example, the stars of the Big Dipper
are named in the order they appear in the con-
stellation. After the Greek alphabet has been ex-
hausted, Latin letters can be employed. Another
method is to use numbers, which are assigned
in the order of increasing right ascension; e.g.
30 Tau is a bright binary star in the constellation
Taurus. These numbers are based on the star cata-
logue Historia Ceelestis Britannica (1725) by the
first Astronomer Royal, John Flamsteed. More-
over, variable stars have their special identifiers
(Sect. 13.1). About two hundred bright stars have
a proper name; e.g. the bright o Aur is called also
Capella.

As telescopes evolved, more and more stars
were seen and catalogued. It soon became im-
practical to continue this method of naming.
Thus most of the stars are known only by their
catalogue index numbers. One star may have
many different numbers; e.g. the abovementioned
Capella (o« Aur) is number BD+45° 1077 in the
Bonner Durchmusterung and HD 34029 in the
Henry Draper catalogue.

2.12 Star Catalogues and Maps

The first actual star catalogue was published by
Ptolemy in the second century; this catalogue
appeared in the book to be known later as Al-
magest (which is a Latin corruption of the name
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of the Arabic translation, Al-mijisti). It had 1025
entries; the positions of these bright stars had
been measured by Hipparchos 250 years earlier.
Ptolemy’s catalogue was the only widely used
one prior to the 17th century.

The first catalogues still being used by as-
tronomers were prepared under the direction of
Friedrich Wilhelm August Argelander (1799—
1875). Argelander worked in Turku and later
served as professor of astronomy in Helsinki, but
he made his major contributions in Bonn. Using
a 72 mm telescope, he and his assistants mea-
sured the positions and estimated the magnitudes
of 320,000 stars. The catalogue, Bonner Durch-
musterung, contains nearly all stars brighter than
magnitude 9.5 between the north pole and dec-
lination —2°. (Magnitudes are further discussed
in Chap. 4.) Argelander’s work was later used as
a model for two other large catalogues covering
the whole sky. The total number of stars in these
catalogues is close to one million (Fig. 2.30).

The purpose of these Durchmusterungen or
general catalogues was to systematically list
a great number of stars. In the zone catalogues,
the main goal is to give the positions of stars
as exactly as possible. A typical zone cata-
logue is the German Katalog der Astronomischen
Gesellschaft (AGK). Twelve observatories, each
measuring a certain region in the sky, contributed
to this catalogue. The work was begun in the
1870’s and completed at the turn of the century.

General and zone catalogues were based on vi-
sual observations with a telescope. The evolution
of photography made this kind of work unneces-
sary at the end of the 19th century. Photographic
plates could be stored for future purposes, and
measuring the positions of stars became easier
and faster, making it possible to measure many
more stars.

A great international program was started at
the end of the 19th century in order to photograph
the entire sky. Eighteen observatories participated
in this Carte du Ciel project, all using similar in-
struments and plates. The positions of stars were
first measured with respect to a rectangular grid
exposed on each plate (Fig. 2.25a). These coor-
dinates could then be converted into declination
and right ascension.

The old plates have been useful also much
later. By observing the same areas again the
proper motions of many stars can be measured.

Positions of stars in catalogues are measured
with respect to certain comparison stars, the co-
ordinates of which are known with high accuracy.
The coordinates of these reference stars are pub-
lished in fundamental catalogues. The first such
catalogue was needed for the AGK catalogue; it
was published in Germany in 1879. This Funda-
mental Katalog (FK 1) gives the positions of over
500 stars.

A widely used catalogue is the SAO cata-
logue, published by the Smithsonian Astrophysi-
cal Observatory in the 1960’s. It contains the ex-
act positions, magnitudes, proper motions, spec-
tral classifications, etc. of 258,997 stars brighter
than magnitude 9. The catalogue was accompa-
nied by a star map containing all the stars in the
catalogue.

In the 1990°’s a large astrometric catalogue,
PPM (Positions and Proper Motions), was pub-
lished to replace the AGK and SAO catalogues. It
contained all stars brighter than 7.5 magnitudes,
and was almost complete to magnitude 8.5. Al-
together, the four volumes of the catalogue con-
tained information on 378,910 stars.

The PPM was effectively replaced by the Ty-
cho catalogue from Hipparcos satellite. Hippar-
cos was the first astrometric satellite, and was
launched by the European Space Agency (ESA)
in 1989. Although Hipparcos didn’t reach the
planned geosynchronous orbit, it gave exact posi-
tions of over a hundred thousand stars. The Hip-
parcos catalogue, based on the measurements of
the satellite, contains astrometric and photomet-
ric data of 118,000 stars. The coordinates are pre-
cise to a couple of milliarcseconds. The less pre-
cise Tycho catalogue contains the data of about
one million stars.

In 1999 and 2000, the sixth version of the
Fundamental Katalog, the FK6, was published.
It combined the Hipparcos data and FKS for
4150 fundamental stars. The typical mean error in
proper motion was 0.35 milliarcseconds per year
for the basic stars. With the advance of the Inter-
net, the printed versions of star catalogues were
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Fig. 2.30 The representations in four atlases of the
Hyades cluster in the constellation Taurus. (a) Heis:
Atlas Coelestis, published in 1872. (b) Bonner Durch-
musterung. (¢) SAO, (d) Palomar Sky Atlas, red plate. The
big blob is the brightest star of Taurus, or « Tauri alias

discontinued in the first years of the new millen-
nium, and the catalogues were moved to the In-
ternet.

Aldebaran. (e) All the stars in the Tycho Catalog, num-
bering over one million, are marked on an all-sky chart.
The bright lane is the Milky Way. (Picture David Seal,
NASA/JPL/Caltech)

In the current /CRS system (International Co-
ordinate Reference System) the celestial coordi-
nates are fixed to distant quasars, the positions
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of which remain pretty constant with time. The
coordinates of the epoch J2000.0 correspond to
the coordinates of this fundamental system quite
closely.

With the new media, the size of the star cat-
alogues exploded. The first Hubble Guide Star
Catalog from the early 1990’s contained 18 mil-
lion stars and the second Guide Star Catalog
from the year 2001, nearly 500 million stars. It
was surpassed by the U.S. Naval Observatory
USNO-B1.0 Catalog, which contains entries for
1,024,618,261 stars and galaxies from digitised
images of several photographic sky surveys. The
catalogue presents right ascension and declina-
tion, proper motion and magnitude estimates.

The next step in the accuracy of astrometry
will be achieved in the 2010’s with a new Eu-
ropean astrometric satellite. The Gaia satellite
launched in 2013 has improved the accuracy to
about 10~ seconds of arc.

The importance of astrometry is not limited
to star maps. Astrometric observations give ba-
sic information with deeper physical content also.
When the distance of a star is known, its true radi-
ation power can be calculated from the observed
brightness (Chap. 4), giving information about
the structure and evolution of the star (Chaps. 11
and 12). Motions of stars are related e.g. to the
mass distribution of the Milky Way (Chap. 18).

Star maps have been published since ancient
times, but the earliest maps were globes show-
ing the celestial sphere as seen from the outside.
At the beginning of the 17th century, a German,
Johannes Bayer, published the first map show-
ing the stars as seen from inside the celestial
sphere, as we see them in the sky. Constellations
were usually decorated with drawings of mytho-
logical figures. The Uranometria Nova (1843) by
Argelander represents a transition towards mod-
ern maps: mythological figures are beginning to
fade away. The map accompanying the Bonner
Durchmusterung carried this evolution to its ex-
treme. The sheets contain nothing but stars and
coordinate lines.

Most maps are based on star catalogues. Pho-
tography made it possible to produce star maps
without the cataloguing stage. The most impor-
tant of such maps is a photographic atlas the

full name of which is The National Geographic
Society—Palomar Observatory Sky Atlas. The
plates for this atlas were taken with the 1.2 m
Schmidt camera on Mount Palomar. The Palomar
Sky Atlas was completed in the 1950’s. It con-
sists of 935 pairs of photographs: each region has
been photographed in red and blue light. The size
of each plate is about 35 cm x 35 cm, covering
an area of 6.6° x 6.6°. The prints are negatives
(black stars on a light background), because in
this way, fainter objects are visible. The limiting
magnitude is about 19 in blue and 20 in red.

The Palomar atlas covers the sky down to
—30°. Work to map the rest of the sky was car-
ried out later at two observatories in the south-
ern hemisphere, at Siding Spring Observatory in
Australia, and at the European Southern Obser-
vatory (ESO) in Chile. The instruments and the
scale on the plates are similar to those used earlier
for the Palomar plates, but the atlas is distributed
on film transparencies instead of paper prints.

For amateurs there are several star maps of
various kinds. Some of them are mentioned in the
references.

Several star catalogues can nowadays copied
freely from the Internet. Thus anyone with suit-
able programming skills can make star maps ap-
propriate for her own purposes.

2.13 Sidereal and Solar Time

Time measurements can be based on the rotation
of the Earth, orbital motion around the Sun, or
on atomic clocks. The last-mentioned will be dis-
cussed in the next section. Here we consider the
sidereal and solar times related to the rotation of
the Earth.

We defined the sidereal time as the hour an-
gle of the vernal equinox. A good basic unit is a
sidereal day, which is the time between two suc-
cessive upper culminations of the vernal equinox.
After one sidereal day the celestial sphere with
all its stars has returned to its original position
with respect to the observer. The flow of sidereal
time is as constant as the rotation of the Earth.
The rotation rate is slowly decreasing, and thus
the length of the sidereal day is increasing. In ad-
dition to the smooth slowing down irregular vari-
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Fig. 2.31 One sidereal day is the time between two
successive transits or upper culminations of the vernal
equinox. By the time the Earth has moved from A to B,
one sidereal day has elapsed. The angle A is greatly exag-
gerated; in reality, it is slightly less than one degree

ations of the order of one millisecond have been
observed.

Unfortunately, also the sidereal time comes in
two varieties, apparent and mean. The apparent
sidereal time is determined by the true vernal
equinox, and so it is obtained directly from ob-
servations.

Because of the precession the ecliptic longi-
tude of the vernal equinox increases by about
50" a year. This motion is very smooth. Nutation
causes more complicated wobbling. The mean
equinox is the point where the vernal equinox
would be if there were no nutation. The mean
sidereal time is the hour angle of this mean
equinox.

The difference of the apparent and mean side-
real time is called the equation of equinoxes:

®, — Om = A cose, (2.42)
where ¢ is the obliquity of the ecliptic at the in-
stant of the observation, and Ay, the nutation in
longitude. This value is tabulated for each day
e.g. in the Astronomical Almanac. It can also be
computed from the formulae given in Box 2.1. It
1S at most about one second, so it has to be taken
into account only in the most precise calculations.

Figure 2.31 shows the Sun and the Earth at
vernal equinox. When the Earth is at the point A,
the Sun culminates and, at the same time, a new
sidereal day begins in the city with the huge black
arrow standing in its central square. After one

sidereal day, the Earth has moved along its orbit
almost one degree of arc to the point B. There-
fore the Earth has to turn almost a degree further
before the Sun will culminate. The solar or syn-
odic day is therefore 3 min 56.56 s (sidereal time)
longer than the sidereal day. This means that the
beginning of the sidereal day will move around
the clock during the course of one year. After
one year, sidereal and solar time will again be in
phase. The number of sidereal days in one year is
one higher than the number of solar days.

When we talk about rotation periods of plan-
ets, we usually mean sidereal periods. The length
of day, on the other hand, means the rotation pe-
riod with respect to the Sun. If the orbital period
around the Sun is P, sidereal rotation period 7,
and synodic day 7, we now know that the num-
ber of sidereal days in time P, P/t,, is one higher
than the number of synodic days, P/t:

P P—l

. T
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1 1 1
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T T« P ( )

This holds for a planet rotating in the direction of
its orbital motion (counterclockwise). If the sense
of rotation is opposite, or retrograde, the number
of sidereal days in one orbital period is one less
than the number of synodic days, and the equa-
tion becomes

! ! ! 2.44

TR @4

For the Earth, we have P = 365.2564 d, and
T =1 d, whence (2.43) gives 7, = 0.99727 d =
23 h 56 min 4 s, solar time.

Since our everyday life follows the alternation
of day and night, it is more convenient to base our
timekeeping on the apparent motion of the Sun
rather than that of the stars. Unfortunately, the so-
lar time does not flow at a constant rate. There are
two reasons for this. First, the orbit of the Earth is
not exactly circular, but an ellipse, which means
that the velocity of the Earth along its orbit is
not constant. Second, the Sun moves along the
ecliptic, not the equator. Thus its right ascension
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does not increase at a constant rate. The change
is fastest at the end of December (4 min 27 s per
day) and slowest in mid-September (3 min 35 s
per day). As a consequence, the hour angle of the
Sun (which determines the solar time) also grows
at an uneven rate.

To find a solar time flowing at a constant rate,
we define a fictitious mean sun, which moves
along the celestial equator with constant angu-
lar velocity, making a complete revolution in one
year. By year we mean here the tropical year,
which is the time it takes for the Sun to move
from one vernal equinox to the next. In one trop-
ical year, the right ascension of the Sun increases
exactly 24 hours. The length of the tropical year
is 365 d 5 h 48 min 46 s = 365.2422 d. Since the
direction of the vernal equinox moves due to pre-
cession, the tropical year differs from the sidereal
year, during which the Sun makes one revolution
with respect to the background stars. One sidereal
year is 365.2564 d.

Using our artificial mean sun, we now define
an evenly flowing solar time, the mean solar time
(or simply mean time) Ty, which is equal to the
hour angle Ay of the centre of the mean sun plus
12 hours (so that the date will change at midnight,
to annoy astronomers):

Tv=hm+ 12 . (2.45)

The difference between the true solar time T
and the mean time Ty is called the equation of
time:

ET. =T — Ty. (2.46)

(In spite of the identical abbreviation, this has
nothing to do with a certain species of little green
men.) The greatest positive value of E.T. is about
16 minutes and the greatest negative value about
—14 minutes (see Fig. 2.32). This is also the dif-
ference between the true noon (the meridian tran-
sit of the Sun) and the mean noon.

Both the true solar time and mean time are
local times, depending on the hour angle of the
Sun, real or artificial. If one observes the true so-
lar time by direct measurement and computes the
mean time from (2.46), a digital watch will prob-
ably be found to disagree with both of them. The
reason for this is that we do not use local time in
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Fig. 2.32 Equation of time. A sundial always shows (if
correctly installed) true local solar time. To find the local
mean time the equation of time must be subtracted from
the local solar time

our everyday life; instead we use the zonal time
of the nearest time zone.

In the past, each city had its own local time.
When travelling became faster and more popu-
lar, the great variety of local times became an in-
convenience. At the end of the 19th century, the
Earth was divided into 24 zones, the time of each
zone differing from the neighbouring ones by one
hour. On the surface of the Earth, one hour in time
corresponds to 15° in longitude; the time of each
zone is determined by the local mean time at one
of the longitudes 0°, 15°, ..., 345°.

The time of the zero meridian going through
Greenwich is used as an international reference,
Universal Time. In most European countries, time
is one hour ahead of this (Fig. 2.33).

In summer, many countries switch to daylight
saving time, during which time is one hour ahead
of the ordinary time. The purpose of this is to
make the time when people are awake coincide
with daytime in order to save electricity, particu-
larly in the evening, when people go to bed one
hour earlier. During daylight saving time, the dif-
ference between the true solar time and the offi-
cial time can grow even larger. It has also been
criticised that the disadvantages of the daylight
saving time are much more severe than its profits
in energy saving. Many people have serious diffi-
culties to adapt to a different daily rhythm twice
every year. Also, confusingly, different countries
use different rules for the daylight saving time.

In the EU countries the daylight saving time
begins on the last Sunday of March, at 1 o’clock
UTC in the morning, when the clocks are moved
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forward by one hour, and ends on the last Sunday
of October at 1 o’clock UTC.

2.14 Astronomical Time Systems

Time can be defined using several different phe-
nomena:

1. The solar and sidereal times are based on the
rotation of the Earth.

2. The standard unit of time in the current SI sys-
tem, the second, is based on quantum mechan-
ical atomary phenomena.

3. Equations of physics like the ones describing
the motions of celestial bodies involve a time
variable corresponding to an ideal time run-
ning at a constant pace. The ephemeris time
and dynamical time discussed a little later are
such times.

Observations give directly the apparent side-
real time as the hour angle of the true vernal
equinox. From the apparent sidereal time the
mean sidereal time can be calculated.

The universal time UT is defined by the equa-
tion

GMST(0 UT) =24,110.54841 s
+ T x 8,640,184.812866 s

+ T2 % 0.093104 s

— T3 % 0.0000062 s,

2.47)
where GMST is the Greenwich mean sidereal
time and 7' the Julian century. The latter is ob-
tained from the Julian date J, which is a running
number of the day (Sects. 2.15 and Box 2.2):

_J —12,451,545.0

24
36,525 (248)

This gives the time elapsed since January 1, 2000,
in Julian centuries.

Sidereal time and hence also UT are related
to the rotation of the Earth, and thus contain per-
turbations due to the irregular variations, mainly
slowing down, of the rotation.

In (2.47) the constant 8,640,184.812866 s
tells how much sidereal time runs fast compared

to the UT in a Julian century. As the rotation of
the Earth is slowing down the solar day becomes
longer. Since the Julian century 7" contains a fixed
number of days, it will also become longer. This
gives rise to the small correction terms in (2.47).

Strictly speaking this universal time is the time
denoted by UT1. Observations give UTO, which
contains a small perturbation due to the wander-
ing of the geographical pole, or polar variation.
The direction of the axis with respect to the solid
surface varies by about 0.1” (a few metres on the
surface) with a period of about 430 days (Chan-
dler period). In addition to this, the polar motion
contains a slow nonperiodic part.

The z axis of the astronomical coordinates is
aligned with the angular momentum vector of the
Earth, but the terrestrial coordinates refer to the
axis at the epoch 1903.5. In the most accurate cal-
culations this has to be taken into account.

Due to the polar variation the UTO does not
grow at a constant rate, since also the direction
of the origin, the Greenwich meridian, is vary-
ing. There are also additional irregular variations
of the order of a millisecond, and the secular
slowing-down caused by tidal forces.

Nowadays the SI unit of time, the second, is
defined in a way that has nothing to do with celes-
tial phenomena. Periods of quantum mechanical
phenomena remain more stable than the motions
of celestial bodies involving complicated pertur-
bations.

In 1967, one second was defined as
9,192,631,770 times the period of the light emit-
ted by cesium 133 isotope in its ground state,
transiting from hyperfine level F =4 to F = 3.
Later, this definition was revised to include
small relativistic effects produced by gravita-
tional fields. The relative accuracy of this atomic
time is about 107'2. The international atomic
time, TAI, was adopted as the basis of time sig-
nals in 1972. The time is maintained by the Bu-
reau International des Poids et Mesures in Paris,
and it is the average of several accurate atomic
clocks.

Even before atomic clocks there was a need
for an ideal time proceeding at a perfectly con-
stant rate, corresponding to the time variable
in the equations of Newtonian mechanics. The
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ephemeris time was such a time. It was used
e.g. for tabulating ephemerides. The unit of
ephemeris time was the ephemeris second, which
is the length of the tropical year 1900 divided by
31,556,925.9747. Ephemeris time was not known
in advance. Only afterwards was it possible to de-
termine the difference of ET and UT from obser-
vational data.

In 1984 ephemeris time was replaced by dy-
namical time. It comes in two varieties.

The terrestrial dynamical time (TDT) corre-
sponds to the proper time of an observer moving
with the Earth. The time scale is affected by the
relativistic time dilation due to the orbital speed
of the Earth. The rotation velocity depends on
the latitude, and thus in TDT it is assumed that
the observer is not rotating with the Earth. The
zero point of TDT was chosen so that the old ET
changed without a jump to TDT.

In 1991 a new standard time, the terrestrial
time (TT), was adopted. Practically it is equiva-
lent to TDT.

TT (or TDT) is the time currently used for tab-
ulating ephemerides of planets and other celestial
bodies. For example, the Astronomical Almanac
gives the coordinates of the planets for each day
at0TT.

The Astronomical Almanac also gives the dif-
ference

AT =TDT — UT (2.49)

for earlier years. For the present year and some
future years a prediction extrapolated from the
earlier years is given. Its accuracy is about 0.1 s.
At the beginning of 1990 the difference was
56.7 s; it increases every year by an amount that
is usually a little less than one second.

The terrestrial time differs from the atomic
time by a constant offset

TT =TAI + 32.184 s. (2.50)

TT is well suited for ephemerides of phenom-
ena as seen from the Earth. The equations of mo-
tion of the solar system, however, are solved in
a frame the origin of which is the centre of mass
or barycentre of the solar system. The coordinate
time of this frame is called the barycentric dy-
namical time, TDB. The unit of TDB is defined

so that, on the average, it runs at the same rate as
TT, the difference containing only periodic terms
depending on the orbital motion of the Earth. The
difference can usually be neglected, since it is at
most about 0.002 seconds.

Which of these many times should we use
in our alarm-clocks? None of them. Yet another
time is needed for that purpose. This official wall-
clock time is called the coordinated universal
time, UTC. The zonal time follows UTC but dif-
fers from it usually by an integral number of
hours.

UTC is defined so that it proceeds at the same
rate as TAI, but differs from it by an integral num-
ber of seconds. These leap seconds are used to ad-
just UTC so that the difference from UT1 never
exceeds 0.9 seconds (Fig. 2.34). A leap second
is added either at the beginning of a year or the
night between June and July.

The difference

AAT = TAI — UTC 2.51)

is also tabulated in the Astronomical Almanac.
According to the definition of UTC the difference
in seconds is always an integer. The difference
cannot be predicted very far to the future.

From (2.50) and (2.51) we get

TT = UTC + 32.184 s + AAT, (2.52)

which gives the terrestrial time TT corresponding
to a given UTC. Table 2.2 gives this correction.
The table is easy to extend to the future. When
it is told in the news that a leap second will be
added the difference will increase by one second.
In case the number of leap seconds is not known,
it can be approximated that a leap second will be
added every 1.25 years.

The units of the coordinated universal time
UTC, atomic time TAI and terrestrial time TT are
the same second of the SI system. Hence all these
times proceed at the same rate, the only differ-
ence being in their zero points. The difference of
the TAI and TT is always the same, but due to the
leap seconds the UTC will fall behind in a slightly
irregular way.

Culminations and rising and setting times of
celestial bodies are related to the rotation of the



40

2 Spherical Astronomy

+1s

UT1-UTC

¥ © ® 9 o ¥ © ® O o

94
96
998
00
02
004
006
008

Fig. 2.34 The difference between the universal time
UTI, based on the rotation of the Earth, and the coordi-
nated universal time UTC during 1972-2002. Because the
rotation of the Earth is slowing down, the UT1 will run

Table 2.2 Differences of the atomic time and UTC
(AAT) and the terrestrial time TT and UTC. The terres-
trial time TT used in ephemerides is obtained by adding
AAT + 32.184 s to the ordinary time UTC

AAT TT — UTC
1.1.1972-30.6.1972 10s 42.184 s
1.7.1972-31.12.1972 11s 43.184 s
1.1.1973-31.12.1973 125 44.184 s
1.1.1974-31.12.1974 13s 45.184 s
1.1.1975-31.12.1975 14 s 46.184 s
1.1.1976-31.12.1976 15s 47.184 s
1.1.1977-31.12.1977 16 s 48.184 s
1.1.1978-31.12.1978 17 s 49.184 s
1.1.1979-31.12.1979 18s 50.184 s
1.1.1980-30.6.1981 19s 51.184 s
1.7.1981-30.6.1982 20s 52.184 s
1.7.1982-30.6.1983 21s 53.184 s
1.7.1983-30.6.1985 22s 54.184 s
1.7.1985-31.12.1987 23s 55.184 s
1.1.1988-31.12.1989 24s 56.184 s
1.1.1990-31.12.1990 25s 57.184 s
1.1.1991-30.6.1992 26s 58.184 s
1.7.1992-30.6.1993 27s 59.184 s
1.7.1993-30.6.1994 28's 60.184 s
1.7.1994-31.12.1995 29s 61.184 s
1.1.1996- 31.6.1997 30s 62.184 s
1.7.1997-31.12.1998 31s 63.184 s
1.1.1999-31.12.2005 32s 64.184 s
1.1.2006— 33s 65.184 s

slow of the UTC by about 0.8 seconds a year. Leap sec-
onds are added to the UTC when necessary to keep the
times approximately equal. In the graph these leap sec-
onds are seen as one second jumps upward

Earth. Thus the sidereal time and hence the UT
of such an event can be calculated precisely. The
corresponding UTC cannot differ from the UT by
more than 0.9 seconds, but the exact value is not
known in advance. The future coordinates of the
Sun, Moon and planets can be calculated as func-
tions of the TT, but the corresponding UTC can
only be estimated.

2.15 Calendars

Our calendar is a result of long evolution. The
main problem it must contend with is the incom-
mensurability of the basic units, day, month and
year: the numbers of days and months in a year
are not integers. This makes it rather complicated
to develop a calendar that takes correctly into ac-
count the alternation of seasons, day and night,
and perhaps also the lunar phases.

Our calendar has its origin in the Roman cal-
endar, which, in its earliest form, was based on
the phases of the Moon. From around 700 B.C.
on, the length of the year has followed the appar-
ent motion of the Sun; thus originated the division
of the year into twelve months. One month, how-
ever, still had a length roughly equal to the lunar
cycle. Hence one year was only 354 days long.
To keep the year synchronised with the seasons,
a leap month had to be added to every other year.

Eventually the Roman calendar got mixed up.
The mess was cleared by Julius Caesar in about
46 B.C., when the Julian calendar was developed
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upon his orders by the Alexandrian astronomer
Sosigenes. The year had 365 days and a leap day
was added to every fourth year.

In the Julian calendar, the average length of
one year is 365 d 6 h, but the tropical year is
11 min 14 s shorter. After 128 years, the Julian
year begins almost one day too late. The differ-
ence was already 10 days in 1582, when a calen-
dar reform was carried out by Pope Gregory XIII.
In the Gregorian calendar, every fourth year is
a leap year, the years divisible by 100 being ex-
ceptions. Of these, only the years divisible by 400
are leap years. Thus 1900 was not a leap year, but
2000 was. The Gregorian calendar was adopted
slowly, at different times in different countries.
Although the calendar reform was seen neces-
sary, orders given by the catholic pope were not
easy to accept in e.g. protestant countries. The
transition period did not end before the 20th cen-
tury.

Even the Gregorian calendar is not perfect.
The differences from the tropical year will accu-
mulate to one day in about 3300 years.

Since years and months of variable length
make it difficult to compute time differences,
especially astronomers have employed various
methods to give each day a running number. The
most widely used numbers are the Julian dates.
In spite of their name, they are not related to the
Julian calendar. The only connection is the length
of a Julian century of 36,525 days, a quantity ap-
pearing in many formulas involving Julian dates.
The Julian day number 0 dawned in 4713 B.C.
The day number changes always at 12 : 00 UT.
For example, the Julian day 2,451,545 began at
noon in January 1, 2000. The Julian date can be
computed using the formulas given in Box 2.2.

Julian dates are uncomfortably big numbers,
and therefore modified Julian dates are often
used. The zero point can be e.g. January 1, 2000.
Sometimes 0.5 is subtracted from the date to
make it to coincide with the date corresponding to
the UTC. When using such dates, the zero point
should always be mentioned.

Box 2.1 (Reduction of Coordinates) Star cat-
alogues give coordinates for some standard

epoch. In the following we give the formulas
needed to reduce the coordinates to a given date
and time. The full reduction is rather labori-
ous, but the following simplified version is suf-
ficient for most practical purposes.

We assume that the coordinates are given for
the epoch J2000.0.

1. First correct the place for proper motion un-
less it is negligible.

2. Precess the coordinates to the time of the
observation. First we use the coordinates of
the standard epoch («g,dg) to find a unit
vector pointing in the direction of the star:

€0S §p COS A
cos &g sin o
sin &g

Po=

Precession changes the ecliptic longitude of
the object. The effect on right ascension and
declination can be calculated as three rota-
tions, given by three rotation matrices. By
multiplying these matrices we get the com-
bined precession matrix that maps the pre-
vious unit vector to its precessed equiva-
lent. A similar matrix can be derived for the
nutation. The transformations and constants
given here are based on the system standard-
ised by the IAU in 1976.

The precession and nutation matrices
contain several quantities depending on
time. The time variables appearing in their
expressions are

t=J —2,451,545.0,

_J—2,451,545.0
o 36,525

Here J is the Julian date of the observa-
tion, ¢ the number of days since the epoch
J2000.0 (i.e. noon of January 1, 2000), and
T the same interval of time in Julian cen-
turies.

The following three angles are needed
for the precession matrix

¢ =2306.2181"T +0.30188" T2
+0.017998"T3,
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7 =2306.2181"T + 1.09468"T?
+0.018203"T3,

6 =2004.3109"T — 0.42665"T*
—0.041833"T3.

The precession matrix is now

Py P Pi3
P=|Py Pn Py
P3Py P

The elements of this matrix in terms of the
abovementioned angles are

P11 =coszcosfcos¢ —sinzsing,
Py = —coszcosfsin¢ —sinzcos¢,
Pj3 = —coszsinf,

P> =sinzcos6cos¢ +coszsing,
P>y = —sinzcos# sin¢ + coszcos ¢,
Py; = —sinzsinf,

P31 =sinf cos¢,

P3; = —sinfsing,

P33 =cos6.

The new coordinates are now obtained by
multiplying the coordinates of the standard
epoch by the precession matrix:

p1=Ppy.

This is the mean place at the given time and
date.

If the standard epoch is not J2000.0, it is
probably easiest to first transform the given
coordinates to the epoch J2000.0. This can
be done by computing the precession matrix
for the given epoch and multiplying the co-
ordinates by the inverse of this matrix. In-
verting the precession matrix is easy: we
just transpose it, i.e. interchange its rows
and columns. Thus coordinates given for
some epoch can be precessed to J2000.0 by

. The full nutation correction is rather com-

multiplying them by
Py Py Py
Pl'=|P, Py Py
Pz Py Ps3

In case the required accuracy is higher than
about one minute of arc, we have to do the
following further corrections.

plicated. The nutation used in astronomical
almanacs involves series expansions con-
taining over a hundred terms. Very often,
though, the following simple form is suffi-
cient. We begin by finding the mean obliq-
uity of the ecliptic at the observation time:

g0 =23°26"21.448" — 46.8150"T
—0.00059"T% 4 0.001813"7°.

The mean obliquity means that periodic per-
turbations have been omitted. The formula
is valid a few centuries before and after the
year 2000.

The true obliquity of the ecliptic, €, is ob-
tained by adding the nutation correction to
the mean obliquity:

e =¢g0+ Ac.

The effect of the nutation on the ecliptic
longitude (denoted usually by Avr) and the
obliquity of the ecliptic can be found from

C1 =125° —0.05295°1,

C> =200.9° + 1.97129°¢,

Ay = —0.0048° sin C; — 0.0004° sin C»,
Ae =0.0026° cos Cq + 0.0002° cos C5.

Since Ay and Ae are very small angles,
we have, for example, sin Ay &~ Ay and
cos Ay & 1, when the angles are expressed
in radians. Thus we get the nutation matrix

1 —Aycose —Aysine
N = | Ayrcose 1 —Ae
Avrsine Ae 1
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This is a linearised version of the full trans-
formation. The angles here must be in radi-
ans. The place in the coordinate frame of the
observing time is now

P2=Np,.

4. The annual aberration can affect the place
about as much as the nutation. Approximate
corrections are obtained from

Aacos§ = —20.5"sina sin A
— 18.8" cosacos A,
A8 =20.5" cosasind sin A
+ 18.8” sinasin§ cos A

—8.1"cosdcos A,

where A is the ecliptic longitude of the Sun.
Sufficiently accurate value for this purpose
is given by

G =357.528° 4 0.985600°¢,

A =1280.460° + 0.985647°t
+ 1.915°sin G + 0.020° sin 2G.

These reductions give the apparent place of
the date with an accuracy of a few seconds
of arc. The effects of parallax and diurnal
aberration are even smaller.

Example The coordinates
(o Leo) for the epoch J2000.0 are

of Regulus

o =10h 8 min 22.2 s = 10.139500 h,
§=11°5802" =11.967222°.

Find the apparent place of Regulus on March
12, 1995.

We start by finding the unit vector corre-
sponding to the catalogued place:

—0.86449829
po=| 0.45787318
0.20735204

The Julian date is J = 2,449,789.0, and
thus t = —1756 and T = —0.04807666. The

angles of the precession matrix are { =
—0.03079849°, z = —0.03079798° and 6 =
—0.02676709°. The precession matrix is then

P =
0.99999931 0.00107506 0.00046717
—0.00107506  0.99999942  —0.00000025
—0.00046717 —0.00000025  0.99999989

The precessed unit vector is

—0.86390858
p1 = 0.45880225
0.20775577

The angles needed for the nutation are
Ay = 0.00309516°, Ae = —0.00186227°,
& = 23.43805403°, which give the nutation
matrix

N =
1 —0.00004956  —0.00002149
0.00004956 1 0.00003250 | .
0.00002149  —0.00003250 1

The place in the frame of the date is

—0.86393578
pr= 0.45876618 |,
0.20772230

whence

a =10.135390 h,
8 =11.988906°.

To correct for the aberration we first find the
longitude of the Sun: G = —1373.2° = 66.8°,
A = —8.6°. The correction terms are then

Aa = 18.25" =0.0050°,
A8 = —5.46" = —0.0015°.

Adding these to the previously obtained coor-
dinates we get the apparent place of Regulus
on March 12, 1995:

a=10.1357h=10h 8 min 8.5 s,
§=11.9874°=11°59"15".
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Comparison with the places given in the cat-
alogue Apparent Places of Fundamental Stars
shows that we are within about 3” of the correct
place, which is a satisfactory result.

Box 2.2 (Julian Date) There are several meth-
ods for finding the Julian date. The following
one, developed by Fliegel and Van Flandern in
1968, is well adapted for computer programs.
Let y be the year (with all four digits), m the
month and d the day. The Julian date J at noon
is then

J =367y — {7[y + (m+9)/12]} /4
— (3{[y + (m —9)/7]/100 + 1}) /4
+275m/9 +d + 1,721,029.

The division here means an integer division, the
decimal part being truncated: e.g. 7/3 = 2 and
—7/3=-2.

Example Find the Julian date on January 1,
1990.
Now y=1990,m =1and d = 1.

J =367 x 1990 — 7 x [1990+ (1 +9)/12]/4
—3x {[1990+ (1 —9)/7]/100 + 1}/4
+275 x1/9+1+1,721,029

=730,330 - 3482 —-154+30+1
+ 1,721,029
=2,447,893.

Astronomical tables usually give the Julian
date at 0 UT. In this case that would be
2,447,892.5.

The inverse procedure is a little more com-

plicated. In the following J is the Julian date at
noon (so that it will be an integer):

a=J + 68,569,
b = (4a)/146,097,

c=a— (146,097b +3) /4,

d = [4000(c + 1)]/1,461,001,

e=c— (1461d)/4 + 31,

f = (80e)/2447,

day = e — (2447 £)/80,
g=f/11,

month= f +2 — 12g,
year = 100(b —49) +d + g.

Example In the previous example we got
J =2,447,893. Let’s check this by calculating
the corresponding calendar date:

a=12,447,893 4 68,569 = 2,516,462,

b=(4x2,516,462)/146,097 = 68,

¢=2,516,462 — (146,097 x 68 + 3)/4
= 32,813,

d= [4000(32,813 + 1)]/1,461,001 =89,

e =32,813 — (1461 x 89)/4 + 31 =337,

f=(80x337)/2447 =11,

day =337 — (2447 x 11)/80 =1,

g=11/11=1,

month=11+2—-12x1=1,

year = 100(68 —49) + 89 + 1 = 1990.

Thus we arrived back to the original date.

Since the days of the week repeat in seven
day cycles, the remainder of the division
J /7 unambiguously determines the day of the
week. If J is the Julian date at noon, the re-
mainder of J/7 tells the day of the week in the
following way:

0 = Monday,

5 = Saturday,
6 = Sunday.

Example The Julian date corresponding
to January 1, 1990 was 2,447,893. Since
2,447,893 = 7 x 349,699, the remainder is
zero, and the day was Monday.
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2.16 Examples

Example 2.1 (Trigonometric Functions in a Rect-
angular Spherical Triangle) Let the angle A be
a right angle. When the figure is a plane triangle,
the trigonometric functions of the angle B would
be:

sinB=b/a,

cosB=c/a, tan B =b/c.

For the spherical triangle we have to use the
equations in (2.7), which are now simply:
sin Bsina = sinb,
cos Bsina =cosbsinc,

cosa =cosbcosc.

c
The first equation gives the sine of B:
sin B =sinb/sina.

Dividing the second equation by the third one, we
get the cosine of B:

cos B =tanc/tana.

And the tangent is obtained by dividing the first
equation by the second one:

tan B =tanb/sinc.

The third equation is the equivalent of the Pytha-
gorean theorem for rectangular triangles.

Example 2.2 (Distance Between Two Locations)
The latitude of Helsinki is about ¢; = 60° and
longitude A; = 25°. The corresponding coordi-
nates of La Palma are ¢ = 28.7° and A, =
—17.9°. What is the distance between these lo-
cations measured along the surface of the Earth.

The distance can be found by applying the co-
sine formula to the spherical triangle NHP:

cosa = cos(Ay — A1) sin(90° — ¢y)

x sin(90° — ¢;)
+ c0s(90° — ¢1) cos(90° — ¢»)

=cos(A2 — A1) cOS ¢ cOS @2
+ sin ¢ sin ¢;)

=0.7325 x 0.5 x 0.8771
+0.8660 x 0.4802

=0.7372,

from which a = 42.5°.
Another method is to use vector calculus (Ap-

pendix A). The radius vector with respect to the
centre of the Earth is

r = R(cos¢cosi, cos¢sinA, sing),

where R is the radius of the Earth. In the follow-
ing, only unit vectors are needed, and thus we can
omit the constant R. In the example th unit vec-
tors are

r1 =(0.4532, 0.2113, 0.8660),
ro = (0.8347, —0.2696, 0.4802).

The scalar product of these vectors gives the co-
sine of the angle between the vectors:

cosa=ry-r
=10.4532 x 0.8347 — 0.2113 x 0.2696
+0.8660 x 0.4802
=0.7372,

from which a = 42.5° =0.7419 rad.
Both methods give the same angular sepa-
ration between the two locations. The distance

along the great circle on the surface of the Earth
is then Ra = 6400 x 0.7419 = 4748 km.

Example 2.3 (The Coordinates of New York
City) The geographic coordinates are 41° north
and 74° west of Greenwich, or ¢ = +41°, A =
—74°. In time units, the longitude would be
74/15 h = 4 h 56 min west of Greenwich. The
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geocentric latitude is obtained from
tang’ = y tang = 6,356,752 2tan41°

a? 16,378,137
=0.86347 = ¢ =40°48 34",

The geocentric latitude is 11’ 26” less than the ge-
ographic latitude.

Example 2.4 The angular separation of two ob-
jects in the sky is quite different from their coor-
dinate difference.

Suppose the coordinates of a star A are o] =
10 h, §; = 70° and those of another star B, oy =
11 h, 6, = 80°.

Using the Pythagorean theorem for plane tri-
angles, we would get

(15°)2 + (10°)2 = 18°.
But if we use the third equation in (2.7), we get

cosd = cos(a; — @)
x $in(90° — §81) sin(90° — &;)
+ c08(90° — §1) cos(90° — 87)
=cos(a] — ap) cos 81 cos b
+ sin §; sin 8y
= cos 15° cos 70° cos 80°
+ sin70° sin 80°
=0.983,

B

=z

which yields d = 10.6°. The figure shows why
the result obtained from the Pythagorean theorem
is so far from being correct: hour circles (circles
with o = constant) approach each other towards
the poles and their angular separation becomes
smaller, though the coordinate difference remains
the same.

Example 2.5 Find the altitude and azimuth of
the Moon in Helsinki at midnight at the begin-
ning of 1996.

The right ascension is @« =2h 55 min 7s =
2.9186 h and declination § = 14°42" = 14.70°,
the sidereal time is ® = 6h 19min 26s =
6.3239 h and latitude ¢ = 60.16°.

The hour angle is h = ® — o =3.4053 h=
51.08°. Next we apply the equations in (2.16):

sin A cosa = sin51.08° cos 14.70° = 0.7526,
cos Acosa = cos51.08° cos 14.70° sin 60.16°
—sin 14.70° cos 60.16°
=0.4008,
sina = cos 51.08° cos 14.70° cos 60.16°
+ sin 14.70° sin 60.16°
=0.5225.

Thus the altitude is a = 31.5°. To find the az-
imuth we have to compute its sine and cosine:
sinA = 0.8827, cos A =0.4701.
Hence the azimuth is A = 62.0°. The Moon is
in the southwest, 31.5 degrees above the horizon.

Actually, this would be the direction if the Moon
were infinitely distant.

Example 2.6 Find the topocentric place of the
Moon in the case of the previous example.

The geocentric distance of the Moon at that
time is R = 62.58 equatorial radii of the Earth.
For simplicity, we can assume that the Earth is
spherical.

We set up a rectangular coordinate frame in
such a way that the z axis points towards the
celestial pole and the observing site is in the
xz plane. When the radius of the Earth is used
as the unit of distance, the radius vector of the
observing site is

cos ¢ 0.4976
ro= 0 = 0
sin ¢ 0.8674
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The radius vector of the Moon is

cosdcosh 0.6077
r=R| —cosésinh | =62.58 | —0.7526
sind 0.2538

The topocentric place of the Moon is

37.53
r=r—ro=\|-47.10
15.02

We divide this vector by its length 62.07 to get
the unit vector e pointing to the direction of the
Moon. This can be expressed in terms of the
topocentric coordinates 8’ and h’:

0.6047 cosd’ cosh’
e=|—-0.7588 ] = | —cosé&’sinh’ |,
0.2420 sin &’

which gives §' = 14.00° and A’ = 51.45°. Next
we can calculate the altitude and azimuth as in
the previous example, and we get a = 30.7°, A =
61.9°.

Another way to find the altitude is to take the
scalar product of the vectors e and rg, which
gives the cosine of the zenith distance:

cosz=-e-ro=0.6047 x 0.4976
+0.2420 x 0.8674
=0.5108,

whence z = 59.3° and a = 90° — z = 30.7°. We
see that this is 0.8° less than the geocentric alti-
tude; i.e. the difference is more than the apparent
diameter of the Moon.

Example 2.7 The coordinates of Arcturus are
a =14 h 15.7 min, § = 19°11’. Find the side-

real time at the moment Arcturus rises or sets in
Boston (¢ = 42°19").
Neglecting refraction, we get

cosh =—tan19° 11 tan42° 19’

= —0.348 x 0.910 = —0.317.

Hence, h = +108.47° = 7 h 14 min. The more
accurate result is

cosh = —tan19° 11’ tan42° 19’

sin 35’
cos 19° 11’ cos42°19’
= —0.331,

whence 7 = £109.35° =7 h 17 min. The plus
and minus signs correspond to setting ant ris-
ing, respectively. When Arcturus rises, the side-
real time is

O =a+h=14h16 min — 7 h 17 min
=6 h 59 min

and when it sets, the sidereal time is

® =14h 16 min+ 7 h 17 min
=21 h 33 min.

Note that the result is independent of the date:
a star rises and sets at the same sidereal time ev-
ery day.

Example 2.8 The proper motion of Aldebaran is
1 =0.20"/a and parallax 7= = 0.048”. The spec-
tral line of iron at A = 440.5 nm is displaced
0.079 nm towards the red. What are the radial and
tangential velocities and the total velocity?
The radial velocity is found from
AX v
A c
0.079

v=——-3X
440.5

= 5.4 x 10* m/s = 54 km/s.

108 m/s
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The tangential velocity is now given by (2.40),
since u and 7 are in correct units:

4.74 x 0.20

vw=4T4ur =4.74p/wt = 0.043

=20 km/s.

The total velocity is

v =/v2 4 v} =542 + 202 km/s = 58 km/s.

Example 2.9 Find the local time in Paris (longi-
tude A = 2°) at 12:00.

Local time coincides with the zonal time along
the meridian 15° east of Greenwich. Longitude
difference 15° — 2° = 13° equals (13°/15°) x
60 min = 52 minutes. The local time is 52 min-
utes less than the official time, or 11:08. This is
mean solar time. To find the true solar time, we
must add the equation of time. In early Febru-
ary, E.-T. = —14 min and the true solar time is
11:08 — 14 min = 10:54. At the beginning of
November, ET = +16 min and the solar time
would be 11:24. Since — 14 min and + 16 min are
the extreme values of E.T., the true solar time is
in the range 10:54—11:24, the exact time depend-
ing on the day of the year. During daylight saving
time, we must still subtract one hour from these
times.

Example 2.10 (Estimating Sidereal Time) Since
the sidereal time is the hour angle of the vernal
equinox 7", itis 0 h when 7" culminates or transits
the south meridian. At the moment of the vernal
equinox, the Sun is in the direction of 7" and thus
culminates at the same time as 7. So the sidereal
time at 12:00 local solar time is 0:00, and at the
time of the vernal equinox, we have

©®=T+12h,

where T is the local solar time. This is accu-
rate within a couple of minutes. Since the sidereal
time runs about 4 minutes fast a day, the sidereal
time, n days after the vernal equinox, is

O~T+12h+n x 4 min.

At autumnal equinox 7" culminates at 0:00 local
time, and sidereal and solar times are equal.

Let us try to find the sidereal time in Paris
on April 15 at 22:00, Central European standard
time (=23:00 daylight saving time). The vernal
equinox occurs on the average on March 21; thus
the time elapsed since the equinox is 10 4+ 15 =
25 days. Neglecting the equation of time, the lo-
cal time 7 is 52 minutes less than the zonal time.
Hence

®=T+12h+n x4 min
=21h8min—+ 12 h+ 25 x 4 min
=34 h 48 min = 10 h 48 min.

The time of the vernal equinox can vary about one
day in either direction from the average. There-
fore the accuracy of the result is roughly 5 min.

Example 2.11 Find the rising time of Arcturus
in Boston on January 10.

In Example 2.6 we found the sidereal time
of this event, ® = 6 h 59 min. Since we do not
know the year, we use the rough method of Ex-
ample 2.9. The time between January 1 and ver-
nal equinox (March 21) is about 70 days. Thus
the sidereal time on January 1 is

O~T+12h—T70 x4 min=T + 7 h 20 min,
from which

T=6 —7h20min=6h 59 min — 7 h 20 min
=30h 59 min — 7 h 20 min =23 h 39 min.

The longitude of Boston is 71°W, and the Eastern
standard time is (4°/15°) x 60 min = 16 minutes
less, or 23:23.

Example 2.12 Find the sidereal time in Helsinki
on April 15, 1982 at 20:00 UT.
The Julian date is J = 2,445,074.5 and

- 2,445,074.5 — 2,451,545.0
- 36,525

= —0.1771526.

Next, we use (2.47) to find the sidereal time at
0 UT:

®p=—1,506,521.0s = —418 h28 min 41 s
=13h31 min 19s.
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Since the sidereal time runs 3 min 57 s fast a day
as compared to the solar time, the difference in
20 hours will be

20 3 min 57 s =3 min 17
24>< min 57 s =3 min 17 s,

and the sidereal time at 20 UT will be 13 h 31 min
19s+20h3min17s=33h34min36s=9h
34 min 36 s.

At the same time (at 22:00 Finnish time,
23:00 daylight saving time) in Helsinki the side-
real time is ahead of this by the amount cor-
responding to the longitude of Helsinki, 25°,
i.e. 1 h 40 min 00 s. Thus the sidereal time is
11 h 14 min 36 s.

2.17 Exercises

Exercise 2.1 Find the distance between Helsinki
and Seattle along the shortest route. Where is the
northernmost point of the route, and what is its
distance from the North Pole? The longitude of
Helsinki is 25°E and latitude 60°; the longitude
of Seattle is 122°W and latitude 48°. Assume that
the radius of the Earth is 6370 km.

Exercise 2.2 A star crosses the south meridian
at an altitude of 85°, and the north meridian at
45°. Find the declination of the star and the lati-
tude of the observer.

Exercise 2.3 Where are the following state-
ments true?

(a) Castor (a Gem, declination § = 31°53') is
circumpolar.

(b) Betelgeuze (« Ori, § = 7°24’) culminates at
zenith.

(¢) aCen (8§ = —60°50') rises to an altitude of
30°.

Exercise 2.4 In his Old Man and the Sea Hem-
ingway wrote:

It was dark now as it becomes dark quickly after
the Sun sets in September. He lay against the worn

wood of the bow and rested all that he could. The
first stars were out. He did not know the name of
Rigel but he saw it and knew soon they would all
be out and he would have all his distant friends.

How was Hemingway’s astronomy?

Exercise 2.5 The right ascension of the Sun on
June 1, 1983, was 4h 35 min and declination
22°00'. Find the ecliptic longitude and latitude
of the Sun and the Earth.

Exercise 2.6 Show that on the Arctic Circle the
Sun

(a) rises at the same sidereal time &g between
December 22 and June 22,

(b) sets at the same sidereal time ®y between
June 22 and December 22.

What is ®¢?

Exercise 2.7 Derive the equations (2.24), which
give the galactic coordinates as functions of the
ecliptic coordinates.

Exercise 2.8 The coordinates of Sirius for the
epoch 1900.0 were « = 6h 40 min 45s, § =
—16°35’, and the components of its proper mo-
tion were g = —0.037 s/a, us = —1.12"a~1.
Find the coordinates of Sirius for 2000.0. The
precession must also be taken into account.

Exercise 2.9 The parallax of Sirius is 0.375”
and radial velocity —8 km/s.

(a) What are the tangential and total velocities of
Sirius? (See also the previous exercise.)

(b) When will Sirius be closest to the Sun?

(c) What will its proper motion and parallax be
then?

Exercise 2.10 The average period of the vari-
able star Mira Ceti is 331.96 days. According to
a catalogue the brightness was at maximum in
September 22, 2000. When the star was brightest
in 20107
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Up to the end of the Middle Ages, the most im-
portant means of observation in astronomy was
the human eye. It was aided by various mechan-
ical devices to measure the positions of celes-
tial bodies in the sky. The telescope was invented
in Holland at the beginning of the 17th century,
and in 1609 Galileo Galilei made his first astro-
nomical observations with this new instrument.
Astronomical photography was introduced at the
end of the 19th century, and during the last few
decades many kinds of electronic detectors have
been adopted for the study of electromagnetic
radiation from space. The electromagnetic spec-
trum from the shortest gamma rays to long radio
waves can now be used for astronomical observa-
tions.

3.1 Observing Through the

Atmosphere

With satellites and spacecraft, observations can
be made outside the atmosphere. Yet, the great
majority of astronomical observations are carried
out from the surface of the Earth. In the preceding
chapter, we discussed refraction, which changes
the apparent altitudes of objects. The atmosphere
affects observations in many other, more seri-
ous ways as well. Real problems are the weather,
restlessness of the atmosphere, and, worst of all,
opacity of the atmosphere in many wavelength re-
gions.

The air is never quite steady, and there are lay-
ers with different temperatures and densities; this
causes convection and turbulence. When the light

© Springer-Verlag Berlin Heidelberg 2017

from a star passes through the unsteady air, rapid
changes in refraction in different directions re-
sult. Thus, the amount of light reaching a detec-
tor, e.g. the human eye, constantly varies; the star
is said to scintillate (Fig. 3.1). Planets shine more
steadily, since they are not point sources like the
stars, and variations in the light coming from dif-
ferent parts partly cancel each others.

When a wavefront passes an aperture its am-
plitude and phase vary with time. The amplitude
variations cause scintillation and phase changes
blur the image. A telescope collects light over
a larger area, which evens out rapid changes
and diminishes scintillation. Instead, differences
in the phase do not cancel out the same way;
they smear the image and point sources are seen
in telescopes as vibrating speckles. This phe-
nomenon is called seeing. When the exposure
time is at least a few seconds the light oscillates
in all directions, and the stellar image becomes a
round disk (Fig. 3.3). The diameter of the seeing
disk can vary from less than an arc second to even
tens of arc seconds. If the size of the disk small,
the seeing is good. It is only in good conditions
on high mountains that the seeing is less than one
arc second.

Seeing limits how small details can be seen
with a telescope. Sometimes the atmosphere can
calm down for a short period of time, and then it
is possible to glimpse visually details that are not
seen in pictures exposed for a longer time.

Some wavelength regions in the electromag-
netic spectrum are strongly absorbed by the atmo-
sphere (Fig. 3.2). The most important transparent
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interval is the optical window from about 300 to
800 nm. This interval coincides with the region of
sensitivity of the human eye (about 400-700 nm).

At wavelengths under 300 nm absorption by
atmospheric ozone prevents radiation from reach-
ing the ground. The ozone is concentrated in
a thin layer at a height of about 20-30 km, and
this layer protects the Earth from harmful ultra-
violet radiation. At still shorter wavelengths, the

Fig. 3.1 Scintillation of
Sirius during four passes
across the field of view.
The star was very low on
the horizon. (Photo by
Pekka Parviainen)

main absorbers are O, N> and free atoms. Nearly
all of the radiation under 300 nm is absorbed by
the upper parts of the atmosphere.

At wavelengths longer than visible light, in
the near-infrared region, the atmosphere is fairly
transparent up to 1.3 um. There are some absorp-
tion belts caused by water and molecular oxy-
gen, but the atmosphere gets more opaque only
at wavelengths of longer than 1.3 um. At these

‘Wavelength
g g g ® g g
— = g g s b E g g 5 £ E
=y = 5 g = S 2E g g =
S = = 5 = g = = = 8 E = S E o S S
=) =) =) — = = 2 = — — = = — = = =
| | | [ | | | | | | | |
XUV | EUV |UV
Gamma- X-rays Ultra- Infrared Microwaves Radio waves
rays violet
Solar radiation
100% Atmospheric transmission
Absorption by Absorption Absorption by Scattering from
50% - oxygen and nitrogen by ozone water vapotir/\/ﬂ ionosphere
0% T T
Optical  Infrared Radio window
window  window
100%
Interstellar HI HII
50% - transmission
0%

Fig. 3.2 The transparency of the atmosphere at different
wavelengths. 100 % transmission means that all radiation
reaches the surface of the Earth. The radiation is also ab-

sorbed by interstellar gas, as shown in the lowermost very
schematic figure. The interstellar absorption also varies
very much depending on the direction (Chap. 15)
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Fig. 3.3 Stellar images vibrate about equally often in all
directions, on the average. If the picture is exposed for
more than about one second the image of the star spreads
into a circular seeing disc. The better the observing condi-
tions are the smaller is the diameter of the disc

wavelengths, radiation reaches the lower parts of
the atmosphere only in a few narrow windows.
All wavelengths between 20 pym and 1 mm are
totally absorbed.

At wavelengths longer than 1 mm, there is the
radio window extending up to about 20 m. At
still longer wavelengths, the ionosphere in the up-
per parts of the atmosphere reflects all radiation
(Fig. 3.2). The exact upper limit of the radio win-
dow depends on the strength of the ionosphere,
which varies during the day. (The structure of the
atmosphere is described in Chap. 7.)

At optical wavelengths (300-800 nm), light
is scattered by the molecules and dust in the at-
mosphere, and the radiation is attenuated. Scat-
tering and absorption together are called extinc-
tion. Extinction must be taken into account when
one measures the brightness of celestial bodies
(Chap. 4).

In the 19th century Lord Rayleigh succeeded
in explaining why the sky is blue. Scattering
caused by the molecules in the atmosphere is in-
versely proportional to the fourth power of the
wavelength. Thus, blue light is scattered more
than red light. The blue light we see all over the
sky is scattered sunlight. The same phenomenon

Fig. 3.4 Night views from the top of Mount Wilson. The
upper photo was taken in 1908, the lower one in 1988. The
lights of Los Angeles, Pasadena, Hollywood and more
than 40 other towns are reflected in the sky, causing con-
siderable disturbance to astronomical observations. (Pho-
tos by Ferdinand Ellerman and International Dark-Sky As-
sociation)

colours the setting sun red, because owing to the
long, oblique path through the atmosphere, all the
blue light has been scattered away.

In astronomy one often has to observe very
faint objects. Thus, it is important that the back-
ground sky be as dark as possible, and the atmo-
sphere as transparent as possible. That is why the
large observatories have been built on mountain
tops far from the cities. The air above an observa-
tory site must be very dry, the number of cloudy
nights few, and the seeing good.

Astronomers have looked all over the Earth for
optimal conditions and have found some excep-
tional sites. In the 1970’s, several new major ob-
servatories were founded at these sites. Among
the best sites in the world are: the extinct vol-
cano Mauna Kea on Hawaii, rising more than
4000 m above the sea; the dry mountains in north-
ern Chile; the Sonoran desert in the U.S., near
the border of Mexico; and the mountains on La
Palma, in the Canary Islands. Many older ob-
servatories are severely plagued by the lights of
nearby cities (Fig. 3.4).
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In radio astronomy atmospheric conditions are
not very critical except when observing at the
shortest wavelengths, damped by atmospheric
moisture. Constructors of radio telescopes have
much greater freedom in choosing their sites than
optical astronomers. Still, radio telescopes are
also often constructed in uninhabited places to
isolate them from disturbing radio and television
broadcasts.

3.2  Optical Telescopes
The telescope fulfils three major tasks in astro-
nomical observations:

1. It collects light from a large area, making it
possible to study very faint sources.

2. Itimproves resolution and increases the appar-
ent angular diameter of the object.

3. Itis used to measure the positions of objects.

The light-collecting surface in a telescope
is either a lens or a mirror. Thus, optical tele-
scopes are divided into two types, lens telescopes
or refractors and mirror telescopes or reflectors
(Fig. 3.5).

Geometrical Optics Refractors have two len-
ses, the objective which collects the incoming
light and forms an image in the focal plane, and
the eyepiece which is a small magnifying glass
for looking at the image (Fig. 3.5). The lenses
are at the opposite ends of a tube which can be
directed towards any desired point. The distance

Objective Focal plane  Eyepiece

Secondary
mirror

_\'_ Focal plane /

Eyepiece
4

Fig. 3.5 A lens telescope or refractor and a mirror tele-
scope or reflector

between the eyepiece and the focal plane can be
adjusted to get the image into focus. The image
formed by the objective lens can also be regis-
tered, e.g. on a photographic film, as in an ordi-
nary camera.

The diameter of the objective, D, is called the
aperture of the telescope. The ratio of the aper-
ture D to the focal length f, F = D/f, is called
the aperture ratio. This quantity is used to charac-
terise the light-gathering power of the telescope.
If the aperture ratio is large, near unity, one has
a powerful, “fast” telescope; this means that one
can take photographs using short exposures, since
the image is bright. A small aperture ratio (the fo-
cal length much greater than the aperture) means
a “slow” telescope.

In astronomy, as in photography, the aperture
ratio is often denoted by f/n (e.g. f/8), where
n is the focal length divided by the aperture. For
fast telescopes this ratio can be f/1... f/3, but
usually it is smaller, f/8... f/15.

The scale of the image formed in the focal
plane of a refractor can be geometrically deter-
mined from Fig. 3.6. When the object is seen at
the angle u, it forms an image of height s,

s= ftanu = fu, 3.1

since u is a very small angle. If the telescope has
a focal length of, for instance, 343 cm, one arc
minute corresponds to

s=343cmx 1

=343 cm x (1/60) x (7/180)

=1 mm.

Fig. 3.6 The scale and magnification of a refractor. The
object subtends an angle u. The objective forms an image
of the object in the focal plane. When the image is viewed
through the eyepiece, it is seen at an angle u’
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Fig. 3.7 Diffraction and resolving power. The image of
a single star (a) consists of concentric diffraction rings,
which can be displayed as a mountain diagram (b). Wide
pairs of stars can be easily resolved (c¢). For resolving close

The magnification w is (from Fig. 3.6)

w=uju~ f/f, (3.2)

where we have used the equation s = fu. Here,
f is the focal length of the objective and f’ that
of the eyepiece. For example, if f =100 cm and
we use an eyepiece with f’ =2 cm, the magni-
fication is 50-fold. The magnification is not an
essential feature of a telescope, since it can be
changed simply by changing the eyepiece.

A more important characteristic, which de-
pends on the aperture of the telescope, is the re-
solving power, which determines, for example,
the minimum angular separation of the compo-
nents of a binary star that can be seen as two sep-
arate stars. The theoretical limit for the resolution
is set by the diffraction of light: The telescope
does not form a point image of a star, but rather
a small disk, since light “bends around the cor-
ner” like all radiation (Fig. 3.7).

The theoretical resolution of a telescope is of-
ten given in the form introduced by Rayleigh (see
Box 3.1)

sin ~0 =1.221/D,

[0] =rad. (3.3)

binaries, different criteria can be used. One is the Rayleigh
limit 1.22A/D (d). In practice, the resolution can be writ-
ten /D, which is near the Dawes limit (e). (Photo (a) Sky
and Telescope)

As a practical rule, we can say that two objects
are seen as separate if the angular distance be-
tween them is

0 > /D, [0]=rad. (3.4)

This formula can be applied to optical as well as
radio telescopes. For example, if one makes ob-
servations at a typical yellow wavelength (A =
550 nm), the resolving power of a reflector with
an aperture of 1 m is about 0.1”. However, seeing
spreads out the image to a diameter of typically
one arc second. Thus, the theoretical diffraction
limit cannot usually be reached on the surface of
the Earth.

In photography the resolution is further re-
stricted by the properties of the photographic
plate or the pixel size of the CCD camera, de-
creasing the resolution as compared with vi-
sual observations. The grain size of photographic
emulsions is about 0.01-0.03 mm, which is also
the minimum size of the image. For a focal length
of 1 m, the scale is 1 mm = 206", and thus
0.01 mm corresponds to about 2 arc seconds. This
is similar to the theoretical resolution of a tele-
scope with an aperture of 7 cm in visual obser-
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vations. The pixel sizes of CCD cameras have
decreased, and currently the resolution can be as
good as or even better than the resolution of pho-
tographic films.

In practice, the resolution of visual observa-
tions is determined by the ability of the eye to see
details. In night vision (when the eye is perfectly
adapted to darkness) the resolving capability of
the human eye is about 2.

The maximum magnification wmax 18 the
largest magnification that is worth using in tele-
scopic observations. Its value is obtained from
the ratio of the resolving capability of the eye,
e~?2 =58 x 107 rad, to the resolving power
of the telescope, 6,

58x 1074 D

Omax = ¢/0 X eD/A = S

~ D/1 mm. 3.5
If we use, for example, an objective with a di-
ameter of 100 mm, the maximum magnification
is about 100. If larger magnifications are used
the object is seen bigger but no more details
are resolved. Especially small and cheap amateur
telescopes are advertised having huge magnifi-
cations, which are useless; rather they make ob-
serving very difficult. However, experienced ob-
servers may sometimes use very big magnifica-
tions in some special occasions.

The minimum magnification wm;y is the small-
est magnification that is useful in visual observa-
tions. Its value is obtained from the condition that
the diameter of the exir pupil L of the telescope
must be smaller than or equal to the pupil of the
eye.

The exit pupil is the image of the objective
lens, formed by the eyepiece, through which the
light from the objective goes behind the eyepiece.
From Fig. 3.8 we obtain

/
D
L= LD =—. (3.6)
f w
Thus the condition L < d means that
w>D/d. 3.7

Fig. 3.8 The exit pupil L is the image of the objective
lens formed by the eyepiece

Fig. 3.9 Chromatic aberration. Light rays of different
colours are refracted to different focal points (left). The
aberration can be corrected with an achromatic lens con-
sisting of two parts (right)

In the night, the diameter of the pupil of the hu-
man eye is about 6 mm, and thus the minimum
magnification of a 100 mm telescope is about 17.

Refractors In the first refractors, which had
a simple objective lens, the observations were
hampered by the chromatic aberration. Since
glass refracts different colours by different
amounts, all colours do not meet at the same fo-
cal point (Fig. 3.9), but the focal length increases
with increasing wavelength. To remove this aber-
ration, achromatic lenses consisting of two parts
were developed in the 18th century. The colour
dependence of the focal length is much smaller
than in single lenses, and at some wavelength, g,
the focal length has an extremum (usually a min-
imum). Near this point the change of focal length
with wavelength is very small (Fig. 3.10). If the
telescope is intended for visual observations, we
choose A9 = 550 nm, corresponding to the maxi-
mum sensitivity of the eye. Objectives for photo-
graphic refractors were usually constructed with
Ao & 425 nm, since normal photographic plates
were most sensitive to the blue part of the spec-
trum.



3.2 Optical Telescopes

57

1.003 -~

1.002

1.001 -

1.000

400 500 600 700 800 A [nm]

Fig.3.10 The wavelength dependence of the focal length
of a typical achromatic objective for visual observations.
The focal length has a minimum near A = 550 nm, where
the eye is most sensitive. In bluer light (A =450 nm) or
in redder light (A = 800 nm), the focal length increases by
a factor of about 1.002

By combining three or even more lenses of dif-
ferent glasses in the objective, the chromatic aber-
ration can be corrected still better (as in apochro-
matic objectives). Also, special glasses have been
developed where the wavelength dependences of
the refractive index cancel out so well that two
lenses already give a very good correction of the
chromatic aberration. They have, however, hardly
been used in astronomy so far.

The largest refractors in the world have an
aperture of about one metre (102 cm in the Yerkes
Observatory telescope (Fig. 3.11), finished in
1897, and 91 cm in the Lick Observatory tele-
scope (1888)). The aperture ratio is typically
f/10... f/20.

The use of refractors is limited by their small
field of view and awkwardly long structure. Re-
fractors are still used, e.g. in solar telescopes and
various meridian telescopes for measuring the po-
sitions of stars, and also for visual observations of
binary stars.

A wider field of view is obtained by using
more complex lens systems, and telescopes of
this kind are called astrographs. Astrographs
have an objective made up of typically 3-5 lenses
and an aperture of less than 60 cm. The aperture
ratiois f/5... f/7 and the field of view about 5°.
Astrographs are used to photograph large areas of
the sky, e.g. for proper motion studies and for sta-
tistical brightness studies of the stars.

Reflectors By far the most common telescope
type in astrophysical research nowadays is the
mirror telescope or reflector. As a light-collecting
surface, it employs a mirror coated with a thin
layer of aluminium. The form of the mirror is usu-
ally parabolic. A parabolic mirror reflects all light
rays entering the telescope parallel to the main
axis into the same focal point. The image formed
at this point can be observed through an eyepiece
or registered with a detector. One of the advan-
tages of reflectors is the absence of chromatic
aberration, since all wavelengths are reflected to
the same point.

In the very largest telescopes, the instruments
can be installed at the primary focus (Fig. 3.12)
without eclipsing too much of the incoming light.
Sometimes even the observer could sit in a cage
at the primary focus. In smaller telescopes, this
is not possible, and the image must be inspected
from outside the telescope. In modern telescopes
instruments are remotely controlled, and the ob-
server must stay away from the telescope to re-
duce thermal turbulence.

The idea of a reflector was described in 1663
by James Gregory. The first practical reflector,
however, was built by Isaac Newton. He guided
the light perpendicularly out from the telescope
with a small flat mirror. Therefore the focus of
the image in such a system is called the New-
ton focus. A typical aperture ratio of a Newtonian
telescope is f/3... f/10. Another possibility is
to bore a hole at the centre of the primary mirror
and reflect the rays through it with a small hy-
perbolic secondary mirror in the front end of the
telescope. In such a design, the rays meet in the
Cassegrain focus. Cassegrain systems have aper-
ture ratios of f/8... f/15.

The effective focal length ( f.) of a Cassegrain
telescope is determined by the position and con-
vexity of the secondary mirror. Using the nota-
tions of Fig. 3.13, we get

b

f e = _f p- (3.8)
a

If we choose a < b, we have fe > fp. In this

way one can construct short telescopes with long

focal lengths. Cassegrain systems are especially

well suited for spectrographic, photometric and
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other instruments, which can be mounted in the
secondary focus, easily accessible to the observer.

More complicated arrangements use several
mirrors to guide the light through the declination
axis of the telescope to a fixed coudé focus (from

Fig.3.11 The largest
refractor in the world is at
the Yerkes Observatory,
University of Chicago. It
has an objective lens with
a diameter of 102 cm.
(Photo by Yerkes
Observatory)

Primary focus

Newton
focus

Fig. 3.12 Different locations of the focus in reflectors:
primary focus, Newton focus, Cassegrain focus and coudé
focus. The coudé system in this figure cannot be used for

Cassegrain

the French word couder, to bend), which can even
be situated in a separate room near the telescope
(Fig. 3.14). The focal length is thus very long
and the aperture ratio f/30... f/40. The coudé
focus is used mainly for accurate spectroscopy,

Coudé

observations near the celestial pole. More complex coudé
systems usually have three flat mirrors after the primary
and secondary mirrors
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since the large spectrographs can be stationary
and their temperature can be held accurately con-
stant. Nowadays this can also be achieved by us-
ing optical fibers. A drawback is that much light
is lost in the reflections in the several mirrors
of the coudé system. An aluminised mirror re-
flects about 80 % of the light falling on it, and
thus in a coudé system of, e.g. five mirrors (in-
cluding the primary and secondary mirrors), only

Fig. 3.13 The principle of a Cassegrain reflector. A con-
cave (paraboloid) primary mirror M reflects the light rays
parallel to the main axis towards the primary focus Sj.
A convex secondary mirror M> (hyperboloid) reflects the
rays back through a small hole at the centre of the main
mirror to the secondary focus S, outside the telescope

o

0.8° ~ 30 % of the light reaches the detector. In
new big telescopes the large instruments are usu-
ally mounted at the Nasmyth focus at the end of
the horizontal axis of the telescope.

The reflector has its own aberration, coma. It
affects images displaced from the optical axis.
Light rays do not converge at one point, but form
a figure like a comet. Due to the coma, the clas-
sical reflector with a paraboloid mirror has a very
small correct field of view. The coma limits the
diameter of the useful field to 2-20 minutes of
arc, depending on the aperture ratio of the tele-
scope. The 5 m Palomar telescope, for instance,
has a useful field of view of about 4/, correspond-
ing to about one-eighth of the diameter of the
Moon. In practice, the small field of view can be
enlarged by various correcting lenses.

If the primary mirror were spherical, there
would be no coma. However, this kind of mir-
ror has its own error, spherical aberration: light
rays from the centre and edges converge at dif-
ferent points. To remove the spherical aberration,
the Estonian astronomer Bernhard Schmidt de-
veloped a thin correcting lens that is placed in

Z a2\

52 foot dome

Shutter
84-inch mirror X
112,63 e
¥
Insulated N \ 4
spectrograph Slitat f/31.2 e e i [ —— —— |
enclosure Coudé focus "," Casse-
: Hei grain
| o platform
|
| ) S S e e —
| % e
L‘k}\"ai‘\*!"'_':; ¥ O
MY Y v
S 0
5 []
& il pad
\-\' Base frame tanks i
Coudé optical system

84-inch telescope

Fig.3.14 The coudé system of the Kitt Peak 2.1 m reflector. (Drawing National Optical Astronomy Observatories, Kitt

Peak National Observatory)
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the way of the incoming light. Schmidt cameras
(Figs. 3.15 and 3.16) have a very wide (about 7°),
nearly faultless field of view, and the correcting
lens is so thin that it absorbs very little light. The
images of the stars are very sharp. In Schmidt
telescopes the diaphragm with the correcting lens
is positioned at the centre of the radius of curva-
ture of the mirror (this radius equals twice the fo-
cal length). To collect all the light from the edges
of the field of view, the diameter of the mirror
must be larger than that of the correcting glass.
The Palomar Schmidt camera, for example, has
an aperture of 122 cm (correcting lens)/183 cm
(mirror) and a focal length of 300 cm. The largest
Schmidt telescope in the world is in Tauten-
burg, Germany, and its corresponding values are
134/203/400 cm.

A disadvantage of the Schmidt telescope is
the curved focal plane, consisting of a part of
a sphere. When the telescope is used for pho-
tography, the plate must be bent along the curved
focal plane. Another possibility of correcting the
curvature of the field of view is to use an extra
correcting lens near the focal plane. Such a so-
lution was developed by the Finnish astronomer
Yrjo Viisdld in the 1930’s, independently of
Schmidt. Such a system is often called a Schmidt—

e

Corrector lens at the
centre of curvature

of the main mirror focal surface

) Curved

- |

Fig. 3.15 The principle of the Schmidt camera. A cor-
recting glass at the centre of curvature of a concave spher-
ical mirror deviates parallel rays of light and compensates
for the spherical aberration of the spherical mirror. (In the
figure, the form of the correcting glass and the change of
direction of the light rays have been greatly exaggerated.)
Since the correcting glass lies at the centre of curvature,
the image is practically independent of the incoming an-
gle of the light rays. Thus there is no coma or astigmatism,
and the images of stars are points on a spherical surface
at a distance of R/2, where R is the radius of curvature
of the spherical mirror. In photography, the plate must be
bent into the form of the focal surface, or the field rectified
with a corrector lens

Viisdld telescope. The chips of CCD cameras are
usually much smaller than photographic plates,
and then the curved focal surface is not a prob-
lem.

Schmidt cameras have proved to be very ef-
fective in mapping the sky. They have been used
to photograph the Palomar Sky Atlas mentioned
in the previous chapter and its continuation, the
ESO/SRC Southern Sky Atlas.

The Schmidt camera is an example of a cata-
dioptric telescope, which has both lenses and
mirrors. Schmidt—Cassegrain telescopes used by
many amateurs are modifications of the Schmidt
camera. They have a secondary mirror mounted
at the centre of the correcting lens; the mirror re-
flects the image through a hole in the primary mir-
ror. Thus the effective focal length can be rather
long, although the telescope itself is very short.
Another common catadioptric telescope is the
Maksutov telescope. Both surfaces of the correct-
ing lens as well as the primary mirror of a Mak-
sutov telescope are concentric spheres.

Another way of removing the coma of the
classical reflectors is to use more complicated
mirror surfaces. The Ritchey—Chrétien system
has hyperboloidal primary and secondary mir-
rors, providing a fairly wide useful field of view.
Ritchey—Chrétien optics are used in many large
telescopes.

Mountings of Telescopes A telescope has to be
mounted on a steady support to prevent its shak-
ing, and it must be smoothly rotated during obser-
vations. There are two principal types of mount-
ing, equatorial and azimuthal (Fig. 3.17).

In the equatorial mounting, one of the axes is
directed towards the celestial pole. It is called the
polar axis or hour axis. The other one, the decli-
nation axis, is perpendicular to it. Since the hour
axis is parallel to the axis of the Earth, the appar-
ent rotation of the sky can be compensated for by
turning the telescope around this axis at a con-
stant rate.

The declination axis is the main technical
problem of the equatorial mounting. When the
telescope is pointing to the south its weight
causes a force perpendicular to the axis. When
the telescope is tracking an object and turns west-
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Fig.3.16 The large
Schmidt telescope of the
European Southern
Observatory. The diameter
of the mirror is 1.62 m and
of the free aperture 1 m.
(Photo ESO)

ward, the bearings must take an increasing load
parallel with the declination axis.

In the azimuthal mounting, one of the axes is
vertical, the other one horizontal. This mounting
is easier to construct than the equatorial mount-
ing and is more stable for very large telescopes.
In order to follow the rotation of the sky, the tele-
scope must be turned around both of the axes
with changing velocities. The field of view will
also rotate; this rotation must be compensated for
when the telescope is used for photography.

If an object goes close to the zenith, its az-
imuth will change 180° in a very short time.
Therefore, around the zenith there is a small re-
gion where observations with an azimuthal tele-
scope are not possible.

The largest telescopes in the world were equa-
torially mounted until the development of com-
puters made possible the more complicated guid-
ance needed for azimuthal mountings. Most of
the recently built large telescopes are already az-
imuthally mounted. Azimuthally mounted tele-
scopes have two additional obvious places for
foci, the Nasmyth foci at both ends of the hori-
zontal axis.

The Dobson mounting, used in many amateur
telescopes, is azimuthal. The magnification of the
Newtonian telescope is usually small, and the
telescope rests on pieces of teflon, which make
it very easy to move. Thus the object can easily
be tracked manually.
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Fig.3.17 The equatorial mounting (leff) and the azimuthal mounting (right)

Another type of mounting is the coelostat,
where rotating mirrors guide the light into a sta-
tionary telescope. This system is used especially
in solar telescopes.

To measure absolute positions of stars and ac-
curate time, telescopes aligned with the north—
south direction are used. They can be rotated
around one axis only, the east-west horizontal
axis. Meridian circles or transit instruments with
this kind of mounting were widely constructed
for different observatories during the 19th cen-
tury. A few are still used for astrometry, but they
are now highly automatic. The most important of
the still operational instruments is that of the U.S.
Naval Observatory in Flagstaff. The meridian cir-
cle on La Palma funded by the Carlsberg founda-
tion was closed in 2013.

New Techniques Detectors are already ap-
proaching the theoretical limit of efficiency,
where all incident photons are registered. Ulti-
mately, to detect even fainter objects the only
solution is to increase the light gathering area
(Fig. 3.18), but also the mirrors are getting close
to the practical maximum size. Thus, new techni-
cal solutions are needed.

One new feature is active optics, used in most
new big telescopes. The mirror is very thin, but its
shape is kept exactly correct by a computer con-
trolled support mechanism. The weight and pro-
duction cost of such a mirror are much smaller
compared with a conventional thick mirror. Be-
cause of the smaller weight also the supporting
structure can be made lighter.

Developing the control mechanism further
leads to adaptive optics. A reference star (or an
artificial beam) is monitored constantly in order
to obtain the shape of the seeing disk. The attitude
or the shape of a small auxiliary mirror is adjusted
up to hundreds of times a second to keep the im-
age as concentrated as possible. Adaptive optics
has been taken into use in the largest telescopes
of the world from about the year 2000 on.

The mirrors of large telescopes need not be
monolithic, but can be made of smaller pieces
that are, e.g. hexagonal. These mosaic mirrors
are very light and can be used to build up mir-
rors with diameters of several tens of metres
(Fig. 3.20). Using active optics, the hexagons can
be accurately focused. The California Associa-
tion for Research in Astronomy has constructed
the William M. Keck telescope with a 10 m mo-
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Fig.3.18 The largest
telescopes in the world in
1947-2000. (a) For nearly
30 years, the 5.1 m Hale
telescope on Mount
Palomar, California, USA,
was the largest telescope in
the world. (b) The BTA,
Big Azimuthal Telescope,
is situated in the Caucasus
in the southern Soviet
Union. Its mirror has

a diameter of 6 m. It was
set in operation at the end
of 1975. (¢) The William
M. Keck Telescope on the
summit of Mauna Kea,
Hawaii, was completed in
1992. The 10 m mirror
consists of 36 hexagonal
segments. Another similar
telescope next to it was
completed in 1996. (Photos
Palomar Observatory,
Spetsialnaya
Astrofizitsheskaya
Observatorya, and Roger
Ressmeyer—Starlight for
the California Association
for Research in
Astronomy)

saic mirror. It is located on Mauna Kea, and the
last segment was installed in 1992. Also the E-
ELT telescope (Fig. 3.21) planned by ESO will
have a mosaic mirror.

The reflecting surface does not have to be con-
tinuous, but can even consist of several separate
telescopes. Next to the Keck another similar tele-
scope, the Keck II, was completed in 1996. The
pair can be used as an interferometer that has the
same resolving power as a single 75 metre mir-
ror.

The European Southern Observatory has con-
structed its own multi-mirror telescope. ESO’s
Very Large Telescope (VLT) has four closely lo-
cated telescopes (Fig. 3.19). The diameter of each
mirror is eight metres, and the total area corre-

sponds to one telescope with a 16 m mirror. The
resolution is even better, since the “aperture”, i.e.
the maximum distance between the mirrors, is
several tens of meters.

An important astronomical instruments of the
20th century is the Hubble Space Telescope,
launched in 1990 (Fig. 3.22). It has a mirror with
a diameter of 2.4 m. The resolution of the tele-
scope (after the faulty optics was corrected) is
near the theoretical diffraction limit, since there
is no disturbing atmosphere. A second genera-
tion Space Telescope, now called the James Webb
Space Telescope, will have a mosaic mirror of
6.5 m. The launch has been postponed mainly for
financial reasons. The current estimates for the
launch are around 2018.
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Fig. 3.18 (Continued)

Space telescopes avoid the atmospheric per-
turbations. However, comparable results are
nowadays obtained using the adaptive optics. Due
to budgetary reasons, the majority of astronomi-
cal observations will still be carried out on the
Earth, and great attention will be given to improv-
ing ground-based observatories and detectors.

In the future, satellites will continue to be
mainly used for those wavelength regions where
the radiation is absorbed by the atmosphere.
(Fig. 3.2 and Sect. 3.5).

33 Detectors and Instruments

Only a limited amount of information can be ob-
tained by looking through a telescope with the

unaided eye. Yet until the end of the 19th cen-
tury this was the only way to make observations.

The invention of photography in the middle of
the 19th century brought a revolution in astron-
omy. The next important step forward in optical
astronomy was the development of photoelectric
photometry in the 1940’s and 1950’s. A new revo-
lution, comparable to that caused by the invention
of photography, took place in the middle of the
1970’s with the introduction of different semicon-
ductor detectors. The sensitivity of detectors has
grown so much that today, a 60 cm telescope can
be used for observations similar to those made
with the Palomar 5 m telescope when it was set
in operation in the 1940’s.
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Fig. 3.18 (Continued)

The Photographic Plate Photography has long
been one of the most common methods of obser-
vation in astronomy. In astronomical photogra-
phy glass plates were used, rather than film, since
they keep their shape better, but nowadays they
are no more manufactured, and CCD-cameras
have largely replaced photography. The sensitive
layer on the surface of the film or plate is made up
of a silver halide, usually silver bromide, AgBr.
A photon absorbed by the halide excites an elec-
tron that can move from one atom to another.
A silver ion, Ag™, can catch the electron, becom-
ing a neutral atom. When the necessary amount
of silver atoms have been accumulated at one
place, they form a latent image. The latent image
can be made into a permanent negative by treat-

ing the plate after exposure with various chemi-
cals, which transform the silver bromide crystals
enclosing the latent image into silver (“develop-
ment”), and remove the unexposed crystals (“fix-
ing”).

The photographic plate has many advantages
over the human eye. The plate can register up to
millions of stars (picture elements) at one time,
while the eye can observe at most one or two
objects at a time. The image on a plate is prac-
tically permanent—the picture can be studied at
any time. In addition, the photographic plate is
cheap and easy to use, as compared to many other
detectors. The most important feature of a plate
is its capability to collect light over an extended
time: the longer exposures are used, the more sil-
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Fig. 3.19 Some new large telescopes. (a) The European
Southern Observatory (ESO) was founded by Belgium,
France, the Netherlands, Sweden and West Germany in
1962. Other European countries have joined them later.
The VLT (Very Large Telescope) on Cerro Paranal in
Northern Chile, was inaugurated in 1998-2000. (b) Cur-
rently the largest telescope is the GTC (Gran Telesco-

ver atoms are formed on the plate (the plate dark-
ens). By increasing the exposure times, fainter
objects can be photographed. The eye has no such

pio Canarias or GranTeCan) on La Palma. The observa-
tions with the 10.4 m mirror were made in 2009. (c¢) The
largest binocular is the LBT (Large Binocular Telescope)
on Mount Graham in Arizona, completed in 2008. It has
two 8.4 metre mirrors. (Photos ESO, IAC, Max Planck
Institute)

capacity: if a faint object does not show through
a telescope, it cannot been seen, no matter how
long one stares.
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Fig.3.19 (Continued)

Fig.3.20 The mirror of

a telescope can be made up
of several smaller
segments, which are much
easier to manufacture, as in
the Hobby—Eberle
Telescope on Mount
Fowlkes, Texas. The
effective diameter of the
mirror is 9.1 m. A similar
telescope is being built in
South Africa. (Photo
MacDonald Observatory)

One disadvantage of the photographic plate is
its low sensitivity. Only one photon in a thou-
sand causes a reaction leading to the formation
of a silver grain. Thus the quantum efficiency of
the plate is only 0.1 %. Several chemical treat-
ments can be used to sensitise the plate before
exposure. This brings the quantum efficiency up
to a few percent. Another disadvantage is the fact
that a silver bromide crystal that has been ex-
posed once does not register anything more, i.e.

a saturation point is reached. On the other hand,

a certain number of photons are needed to pro-
duce an image. Doubling the number of pho-
tons does not necessarily double the density (the
‘blackness’ of the image): the density of the plate
depends nonlinearly on the amount of incoming
light (Fig. 3.23). The sensitivity of the plate is
also strongly dependent on the wavelength of the
light. For the reasons mentioned above the ac-
curacy with which brightness can be measured
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Fig. 3.21 In order to observe objects essentially fainter
than nowadays the size of the objective must be increased
considerably. The European Southern Observatory ESO
started to make plans for a 100 metre OWL telescope
(Overwhelmingly Large telescope), but when the price
turned out to be “astronomical” the size has been reduced

Fig.3.22 The Hubble
Space Telescope after the
latest service flight in 2009.
The telescope got new
solar panels and several
other upgrades. (Photo
NASA)

on a photographic plate is usually worse than
about 5 %. Thus the photographic plate makes
a poor photometer, but it can be excellently used,
e.g. for measuring the positions of stars (posi-
tional astronomy) and for mapping the sky. Old
photography archives are still valuable for study-
ing proper motions and brightness variations that
are not too minuscule.

several times. When the E-ELT telescope (European Ex-
tremely Large Telescope) will be completed the main mir-
ror will have a diameter of 39 metres. The mirror will con-
sist of 798 hexagonal pieces, each having a diameter of
1.45 metres. (ESO)

Photocathodes, Photomultipliers A photo-
cathode is a more effective detector than the pho-
tographic plate. It is based on the photoelectric
effect. A light quantum, or photon, hits the pho-
tocathode and loosens an electron. The electron
moves to the positive electrode, or anode, and
gives rise to an electric current that can be mea-
sured. The quantum efficiency of a photocathode
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Fig. 3.23 The density of a photographic emulsion de-
pends on the incident light. If there is very little light it has
no effect. Even then the film is not completely transparent
since it has a light background fog. When the amount of
light increases the density will begin to grow first nonlin-
early. When the exposure is optimal, which depends of the
type of the film, the dependence of the density on exposure
is nearly linear. When there is too much light, all grains of
the film become dark and the image is saturated

is about 10-20 times better than that of a pho-
tographic plate; optimally, an efficiency of 30 %
can be reached. A photocathode is also a linear
detector: if the number of electrons is doubled,
the outcoming current is also doubled.

The photomultiplier is one of the most impor-
tant applications of the photocathode. In this de-
vice, the electrons leaving the photocathode hit
a dynode. For each electron hitting the dynode,
several others are released. When there are sev-
eral dynodes in a row, the original weak current
can be intensified a millionfold. The photomulti-
plier measures all the light entering it, but does
not form an image. Photomultipliers are mostly
used in photometry, and an accuracy of 0.1-1 %
can be attained.

Photometers, Polarimeters A detector mea-
suring brightness, a photometer, is usually lo-
cated behind the telescope in the Cassegrain fo-
cus. In the focal plane there is a small hole, the di-
aphragm, which lets through light from the object
under observation. In this way, light from other
stars in the field of view can be prevented from
entering the photometer. A field lens behind the
diaphragm refracts the light rays onto a photo-
cathode. The outcoming current is intensified fur-

Dia- Colli-
phragm  mator

I '
| Field lens

Filter
Photocathode

Semitransparent
mirrors

-

Dynodes
Anode
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Photo- counter

multiplier

Fig. 3.24 The principle of a photoelectric multicolour
photometer. Light collected by the telescope atrives from
the left. The light enters the photometer through a small
hole in the focal plane, the diaphragm. A lens collimates
the light into a parallel beam. Semitransparent mirrors di-
vide the beam to several photomultipliers. A field lens
guides the light through a filter onto the photocathode of
the photomultiplier. The quanta of light, photons, release
electrons from the cathodes. The electrons are accelerated
towards the dynodes with a voltage of about 1500 V. The
electrons hitting the dynodes release still more electrons,
and the current is greatly enhanced. Every electron emit-
ted from the cathode gives rise to a pulse of up to 108 elec-
trons at the anode; the pulse is amplified and registered by
a pulse counter. In this way, the photons from the star are
counted

ther in a preamplifier. The photomultiplier needs
a voltage of 1000—1500 volts.

Observations are often made in a certain wave-
length interval, instead of measuring all the ra-
diation entering the detector. In this case a filter
is used to prevent other wavelengths from reach-
ing the photomultiplier. A photometer can also
consist of several photomultipliers (Fig. 3.23),
which measure simultaneously different wave-
length bands. In such an instrument beam split-
ters or semitransparent mirrors split the light
beam through fixed filters to the photomultipliers.

In a device called the photopolarimeter, a po-
larising filter is used, either alone or in combina-
tion with other filters. The degree and direction of
polarisation can be found by measuring the inten-
sity of the radiation with different orientations of
the polarisers.

In practice, the diaphragm of a photometer
will always also let through part of the back-
ground sky around the observed object. The mea-
sured brightness is in reality the combined bright-
ness of the object and the sky. In order to find the
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brightness of the object, the background bright-
ness must be measured separately and subtracted
from the combined brightness. The accuracy of
the measurements is decreased if long observa-
tion times are used and the background bright-
ness undergoes fast changes. The problem can be
solved by observing the brightness of the back-
ground sky and the object simultaneously.

Photometric observations are often relative. If
one is observing, e.g. a variable star, a reference
star close to the actual target is observed at regu-
lar intervals. Using the observations of this ref-
erence star it is possible to derive a model for
the slow changes in the atmospheric extinction
(see Chap. 4) and remove their effect. The instru-
ment can be calibrated by observing some stan-
dard stars, whose brightness is known very accu-
rately.

Image Intensifiers Different image intensifiers
based on the photocathode have been used since
the 1960’s. In the intensifier the information
about the starting point of the electron on the pho-
tocathode is preserved and the intensified image
is formed on a fluorescent screen. The image can
then be registered, e.g. with a CCD camera. One
of the advantages of the image intensifier is that
even faint objects can be imaged using relatively
short exposures, and observations can be made at
wavelengths where the detector is insensitive.

Another common type of detector is based on
the TV camera (Vidicon camera). The electrons
released from the photocathode are accelerated
with a voltage of a few kilovolts before they hit
the electrode where they form an image in the
form of an electric charge distribution. After ex-
posure, the charge at different points of the elec-
trode is read by scanning its surface with an elec-
tron beam row by row. This produces a video sig-
nal, which can be transformed into a visible im-
age on a TV tube. The information can also be
saved in digital form. In the most advanced sys-
tems, the scintillations caused by single electrons
on the fluorescent screen of the image intensi-
fier can be registered and stored in the memory
of a computer. For each point in the image there
is a memory location, called a picture element or
pixel.

Since the middle of the 1970’s, detectors using
semiconductor techniques began to be used in in-
creasing numbers. With semiconductor detectors
a quantum efficiency of about 70—80 % can be at-
tained; thus, sensitivity cannot be improved much
more. The wavelength regions suitable for these
new detectors are much wider than in the case of
the photographic plate. The detectors are also lin-
ear: if the number of photons is doubled, also the
signal will be doubled. Computers are used for
collecting, saving and analysing the output data
available in digital form.

CCD Camera Currently the most important
detector is the CCD camera (Charge Coupled De-
vice). The detector consists of a surface made
up of light sensitive silicon diodes, arranged in
a rectangular array of image elements or pix-
els. The largest cameras can have as many as
4096 x 4096 pixels, although most are consid-
erably smaller. Recently, CCD’s have become
widely used in ordinary digital cameras.

A photon hitting the detector can release
an electron, which will remain trapped inside
a pixel. After the exposure varying potential
differences are used to move the accumulated
charges row by row to a readout buffer. In the
buffer the charges are moved pixel by pixel to
an analogy/digital converter, which transmits the
digital value to a computer. Reading an image
also clears the detector (Fig. 3.24). If the expo-
sures are very short the readout times may take
a substantial part of the observing time.

The CCD camera is nearly linear: the number
of electrons is directly proportional to the num-
ber of photons. Calibration of the data is there-
fore much easier than with photographic plates
(Fig. 3.25).

The quantum efficiency, i.e. the number of
electrons per incident photon, is high, and the
CCD camera is much more sensitive than a pho-
tographic plate. The sensitivity is highest in the
red wavelength range, about 600-800 nm, where
the quantum efficiency can be 80-90 % or even
higher.

The range of the camera extends far to the in-
frared. In the ultraviolet the sensitivity drops due
to the absorption of the silicon very rapidly be-
low about 500 nm. Two methods have been used
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Fig. 3.25 The principle of reading a CCD camera.
(a) During an exposure electrons are trapped in potential
wells corresponding to pixels of the camera. The number
at each pixel shows the number of electrons. (b) After
the exposure each horizontal line is moved one pixel to
the right; the rightmost row moves to the readout buffer.
(c) The contents of the buffer is moved down by one pixel.

to avoid this problem. One is to use a coating that
absorbs the ultraviolet photons and emits light of
longer wavelength. Another possibility is to turn
the chip upside down and make it very thin to re-
duce the absorption.

The thermal noise of the camera generates
dark current even if the camera is in total dark-
ness. To reduce the noise the camera must be
cooled. Astronomical CCD cameras are usually
cooled with liquid nitrogen, which efficiently re-
moves most of the dark current. However, the
sensitivity is also reduced when the camera is
cooled; so too cold is not good either. The tem-
perature must be kept constant in order to obtain
consistent data. For amateurs there are already
moderately priced CCD cameras, which are elec-
trically cooled. Many of them are good enough
also for scientific work, if very high sensitivity is
not required.

The dark current can easily be measured by
taking exposures with the shutter closed. Sub-
tracting this from the observed image gives the
real number of electrons due to incident light
(Fig. 3.26).

>
v}

/

The lowermost charge moves to the A/D converter, which
sends the number of electrons to the computer. (d) Af-
ter moving the buffer down several times one vertical row
has been read. (e) The image is again shifted right by one
pixel. This procedure is repeated till the whole image is
read

saturation

dark
current

exposure

Fig. 3.26 The signal measured by a CCD-camera de-
pends almost linearly on the number of photons. During
the exposure also the dark current will increase and has to
be subtracted from the observed values. Bias is the dark
current registered even if the exposure time were zero

The sensitivity of individual pixels may be
slightly different. This can be corrected for by
taking an image of an evenly illuminated field,
like a twilight sky, where stars are not visible.
This image is called a flat-field. When observa-
tions are divided by the flat-field, the error caused
by different pixels is removed (Fig. 3.27).
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Fig. 3.27 Typical images related to CCD observations. Top left dark current, top right flat field, bottom left original

raw image and bottom right reduced image

The CCD camera is very stable. Therefore it is
not necessary to repeat the dark current and flat-
field observations very frequently. Typically these
calibration exposures are taken during evening
and morning twilights, just before and after ac-
tual observations.

Cosmic rays are charged particles that can pro-
duce extraneous bright dots in CCD images. They
are usually limited to one or two pixels, and are
easily identified. Typically a short exposure of
a few minutes contains a few traces of cosmic

rays. Instead of a single long exposure it is usu-
ally better to take several short ones, clean the im-
ages from cosmic rays, and finally add the images
on a computer.

A more serious problem is the readout noise
of the electronics. In the first cameras it could
be hundreds of electrons per pixel. In modern
cameras it is a few electrons. This gives a limit
to the faintest detectable signal: if the signal is
weaker than the readout noise, it is indistinguish-
able from the noise. Nowadays there are so called
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L3-cameras (low light level CCD), where elec-
trons are multiplied during reading and the read-
out noise is the only source of noise.

Although the CCD camera is a very sensi-
tive detector, even bright light cannot damage it.
A photomultiplier, on the other hand, can be eas-
ily destroyed by letting in too much light. How-
ever, one pixel can only store a certain number of
electrons, after which it becomes saturated. Ex-
cessive saturation can make the charge to over-
flow also to the neighbouring pixels. If the camera
becomes badly saturated it may have to be read
several times to completely remove the charges.

The largest CCD cameras are quite expensive,
and even they are still rather small compared
with the largest photographic plates and films.
Because they are very sensitive and processing
of the data is easy, they have, however, replaced
photographic materials almost completely.

Spectrographs The simplest spectrograph is
a prism that is placed in front of a telescope.
This kind of device is called the objective prism
spectrograph. The prism spreads out the different
wavelengths of light into a spectrum which can
be registered. During the exposure, the telescope
is usually slightly moved perpendicularly to the
spectrum, in order to increase the width of the
spectrum. With an objective prism spectrograph,
large numbers of spectra can be photographed,
e.g. for spectral classification (Chap. 9).

For more accurate information the slit spec-
trograph must be used (Fig. 3.28). It has a nar-
row slit in the focal plane of the telescope. The
light is guided through the slit to a collimator
that reflects or refracts all the light rays into
a parallel beam. After this, the light is dispersed
into a spectrum by a prism and focused with
a camera onto a detector, which nowadays is usu-
ally a CCD camera. A comparison spectrum is
exposed next to the stellar spectrum to deter-
mine the precise wavelengths. In modern spec-
trographs using CCD cameras, the comparison
spectrum is usually exposed as a separate im-
age. A big slit spectrograph is often placed at the
coudé or Nasmyth focus of the telescope.

The most important property of a spectrograph
is the scale or dispersion of the spectrum. The dis-

Collimator

Green
Violet

Detector

Fig. 3.28 The principle of the slit spectrograph. Light
rays entering through a slit are collimated (made paral-
lel to each other), dispersed into a spectrum by a prism
and projected onto a photographic plate or a CCD. There
can also be several prisms. However, grids are used more
commonly since they give a better resolution

persion tells how long a wavelength range cor-
responds to one distance unit of the detector.
For the objective prism the dispersion is typi-
cally a few tens of nanometres per millimetre. Slit
spectrographs may have a dispersion as high as
1-0.01 nm/mm, which makes it possible to study
even the shapes of individual spectral lines. Often
the dispersion is given as a dimensionless quan-
tity. For instance, the dispersion 1 nm/mm means
that the wavelength scale has increased million-
fold; thus it can be expressed as 106,

Instead of the prism a diffraction grating can
be used to form the spectrum. A grating has nar-
row grooves, side by side, typically several hun-
dred per millimetre. When light is reflected by
the walls of the grooves, the adjoining rays in-
terfere with each other and give rise to spectra of
different orders. There are two kinds of gratings:
reflection and transmission gratings. In a reflec-
tion grating no light is absorbed by the glass as in
the prism or transmission grating. A grating usu-
ally has higher dispersion, or ability to spread the
spectrum, than a prism. The dispersion can be in-
creased by increasing the density of the grooves
of the grating. In slit spectrographs the reflection
grating is most commonly used. In some instru-
ments a grism is used; it is a prism with a trans-
mission grating on one of its surfaces.

Interferometers The resolution of a big tele-
scope is in practice limited by seeing, and thus
increasing the aperture does not necessarily im-
prove the resolution. To get nearer to the theoret-
ical resolution limit set by diffraction (Eq. (3.3),
Fig. 3.6), different interferometers can be used.
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There are two types of optical interferome-
ters. One kind uses an existing large telescope;
the other a system of two or more separate tele-
scopes. In both cases the light rays are allowed
to interfere. By analysing the outcoming interfer-
ence pattern, the structures of close binaries can
be studied, apparent angular diameters of the stars
can be measured, etc.

One of the earliest interferometers was the
Michelson interferometer that was built shortly
before 1920 for the largest telescope of that time.
In front of the telescope, at the ends of a six me-
tre long beam, there were flat mirrors reflecting
the light into the telescope. The form of the inter-
ference pattern changed when the separation of
the mirrors was changed. In practice, the inter-
ference pattern was disturbed by seeing, and only
a few positive results were obtained with this in-
strument.

The diameters of over 30 of the brightest stars
have been measured using intensity interferome-
ters. Such a device consists of two separate tele-
scopes that can be moved in relation to each other.
This method is suitable for the brightest objects
only.

In 1970 the Frenchman Antoine Labeyrie in-
troduced the principle of speckle interferometry.
In traditional imaging the pictures from long ex-
posures consist of a large number of instanta-
neous images, “speckles”, that together form the
seeing disk. In speckle interferometry very short
exposures and large magnifications are used and
hundreds of pictures are taken. When these pic-
tures are combined and analysed (usually in dig-
ital form), the actual resolution of the telescope
can nearly be reached.

The accuracy of interferometric techniques
was improved at the beginning of 00’s. The first
experiments to use the two 10 m Keck telescopes
as one interferometer, were made in 2001. Simi-
larly, the ESO VLT can be used as an interferom-
eter.

3.4 Radio Telescopes

Radio astronomy, started in the 1930’s, extended
the observable range of the electromagnetic spec-
trum by several orders of magnitude. Radio fre-

quencies range from a few megahertz (100 m)
up to about 300 GHz (1 mm). The low-frequency
limit of the radio band is determined by the opac-
ity of the ionosphere, while the high-frequency
limit is due to the strong absorption from oxy-
gen and water bands in the lower atmosphere.
Neither of these limits is very strict, and un-
der favourable conditions radio astronomers can
work into the submillimetre region or through
ionospheric holes during sunspot minima.

At the beginning of the 20th century attempts
were made to observe radio emission from the
Sun. These experiments, however, failed because
of the low sensitivity of the antenna—receiver sys-
tems, and because of the opaqueness of the iono-
sphere at the low frequencies at which most of
the experiments were carried out. The first ob-
servations of cosmic radio emission were later
made by the American engineer Karl G. Jansky
in 1932, while studying thunderstorm radio dis-
turbances at a frequency of 20.5 MHz (14.6 m).
He discovered radio emission of unknown ori-
gin, which varied within a 24 hour period. Some-
what later he identified the source of this radi-
ation to be in the direction of the centre of our
Galaxy.

The real birth of radio astronomy may perhaps
be dated to the late 1930’s, when Grote Reber
started systematic observations with his home-
made 9.5 m paraboloid antenna. Thereafter ra-
dio astronomy developed quite rapidly and has
greatly improved our knowledge of the Universe.

Observations are made both in the contin-
uum (broad band) and in spectral lines (radio
spectroscopy). Much of our knowledge about the
structure of our Milky Way comes from radio ob-
servations of the 21 cm line of neutral hydrogen
and, more recently, from the 2.6 mm line of the
carbon monoxide molecule. Radio astronomy has
resulted in many important discoveries; e.g. both
pulsars and quasars were first found by radio as-
tronomical observations. The importance of the
field can also be seen from the fact that the Nobel
prize in physics has recently been awarded three
times to radio astronomers.

A radio telescope collects radiation in an aper-
ture or antenna, from which it is transformed to
an electric signal by a receiver, called a radiome-
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ter. This signal is then amplified, detected and
integrated, and the output is registered on some
recording device, nowadays usually by a com-
puter. Because the received signal is very weak,
one has to use sensitive receivers. These are often
cooled to minimise the noise, which could other-
wise mask the signal from the source. Because ra-
dio waves are electromagnetic radiation, they are
reflected and refracted like ordinary light waves.
In radio astronomy, however, only reflecting tele-
scopes are used.

At low frequencies the antennas are usually
dipoles (similar to those used for radio or TV),
but in order to increase the collecting area and
improve the resolution, one uses dipole arrays,
where all dipole elements are connected to each
other.

The most common antenna type, however, is
a parabolic reflector, which works exactly as an
optical mirror telescope. At long wavelengths the
reflecting surface does not need to be solid, be-
cause the long wavelength photons cannot see the
holes in the reflector, and the antenna is there-
fore usually made in the form of a metal mesh.
At high frequencies the surface has to be smooth,
and in the millimetre-submillimetre range, radio
astronomers even use large optical telescopes,
which they equip with their own radiometers.
To ensure a coherent amplification of the signal,
the surface irregularities should be less than one-
tenth of the wavelength used.

The main difference between a radio telescope
and an optical telescope is in the recording of
the signal. Radio telescopes are not imaging tele-
scopes (except for synthesis telescopes, which
will be described later); instead, a feed horn,
which is located at the antenna focus, transfers
the signal to areceiver. The wavelength and phase
information is, however, preserved.

The resolving power of a radio telescope, 6,
can be deduced from the same formula (3.4) as
for optical telescopes, i.e. A/D, where A is the
wavelength used and D is the diameter of the
aperture. Since the wavelength ratio between ra-
dio and visible light is of the order of 10,000, ra-
dio antennas with diameters of several kilometres
are needed in order to achieve the same resolution
as for optical telescopes. In the early days of radio

astronomy poor resolution was the biggest draw-
back for the development and recognition of radio
astronomy. For example, the antenna used by Jan-
sky had a fan beam with a resolution of about 30°
in the narrower direction. Therefore radio obser-
vations could not be compared with optical ob-
servations. Neither was it possible to identify the
radio sources with optical counterparts.

The world’s biggest radio telescope is the
Arecibo antenna in Puerto Rico, whose main re-
flector has a diameter of 305 m. It is a fixed metal
mesh built over a natural round valley (Fig. 3.29).
In the late 1970’s the antenna surface and re-
ceivers were upgraded, enabling the antenna to be
used down to wavelengths of 5 cm. The mirror of
the Arecibo telescope is not parabolic but spher-
ical, and the antenna is equipped with a movable
feed system, which makes observations possible
within a 20° radius around the zenith.

A similar and only partly steerable radio tele-
scope is being built in China. It will be the largest
in the world with an antenna diameter of 500 m.

The biggest completely steerable radio tele-
scope is the Green Bank telescope in Virginia,
U.S.A,, dedicated at the end of 2000. It is slightly
asymmetric with a diameter of 100 x 110 m
(Fig. 3.30). Before the Green Bank telescope, for
over two decades the largest telescope was the
Effelsberg telescope in Germany. This antenna
has a parabolic main reflector with a diameter of
100 m. The inner 80 m of the dish is made of
solid aluminium panels, while the outmost por-
tion of the disk is a metal mesh structure. By us-
ing only the inner portion of the telescope, it has
been possible to observe down to wavelengths of
4 mm. The oldest and perhaps best-known big ra-
dio telescope is the 76 m antenna at Jodrell Bank
in Britain, which was completed in the end of the
1950’s.

The biggest telescopes are usually incapable
of operating below wavelengths of 1 cm, because
the surface cannot be made accurate enough.
However, the millimetre range has become more
and more important. In this wavelength range
there are many transitions of interstellar mole-
cules, and one can achieve quite high angular
resolution even with a single dish telescope. At
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Fig. 3.29 The largest radio telescope in the world is the Arecibo dish in Puerto Rico. It has been constructed over
a natural bowl and is 300 m in diameter. (Photo Arecibo Observatory)

Fig. 3.30 The largest fully steerable radio telescope is in Green Bank, Virginia. Its diameter is 100 x 110 m. (Photo
NRAO)

present, the typical size of a mirror of a mil- big millimetre telescopes are in operation (Ta-
limetre telescope is about 15 m. The develop- ble C.24). Among them are the 40 m Nobeyama
ment of this field is rapid, and at present several telescope in Japan, which can be used down to
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Fig. 3.31 The Atacama Large Millimetre Array (ALMA) built in cooperation by Europe, U.S.A. and Japan. The

telescope has 64 antennas. (Photo ESO/NOAJ)

3 mm, the 30 m IRAM telescope at Pico Veleta
in Spain, which is usable down to 1 mm, and the
15 m. The largest project in the first decade of
the 21st century is ALMA (Atacama Large Mil-
limetre Array), which consists of 64 telescopes
with a diameter of 12 m (Fig. 3.31). It was built
as an international project by the United States,
Europe and Japan in Chile on the Chajnantor
plateau.

As already mentioned, the resolving power of
a radio telescope is far poorer than that of an op-
tical telescope. The biggest radio telescopes can
at present reach a resolution of 5 arc seconds,
and that only at the very highest frequencies. To
improve the resolution by increasing the size is
difficult, because the present telescopes are al-
ready close to the practical upper limit. However,
by combining radio telescopes and interferome-
ters, it is possible to achieve even better resolu-
tion than with optical telescopes.

As early as 1891 Michelson used an interfer-
ometer for astronomical purposes. While the use
of interferometers has proved to be quite difficult
in the optical wavelength regime, interferometers

L Ld S £

2

Fig. 3.32 The principle of an interferometer. If the ra-
diation reaches the radio telescopes in the same phase,
the waves amplify each other and a maximum is obtained
in the combined radiation (cases / and 3). If the incom-
ing waves are in opposite phase, they cancel each other
(case 2)

are extremely useful in the radio region. To form
an interferometer, one needs at least two anten-
nas coupled together. The spacing between the
antennas, D, is called the baseline. Let us first
assume that the baseline is perpendicular to the
line of sight (Fig. 3.32). Then the radiation ar-
rives at both antennas with the same phase, and
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the summed signal shows a maximum. However,
due to the rotation of the Earth, the direction of
the baseline changes, producing a phase differ-
ence between the two signals. The result is a sinu-
soidal interference pattern, in which minima oc-
cur when the phase difference is 180 degrees. The
distance between the peaks is given by

0D =A,

where 0 is the angle the baseline has turned and
A is the wavelength of the received signal. The
resolution of the interferometer is thus equal to
that of an antenna with a linear size equal to D.

If the source is not a point source, the radi-
ation emitted from different parts of the source
will have phase differences when it enters the an-
tennas. In this case the minima of the interference
pattern will not be zero, but will have some posi-
tive value Ppin. If we denote the maximum value
of the interference pattern by Ppax, the ratio

Prax — Prin

Prax + Pmin

gives a measure of the source size (fringe visibil-
ity).

More detailed information about the source
structure can be obtained by changing the base-
line by changing the relative positions of the
antennas. In principle it is possible to observe
the same amount of details as with a single an-
tenna with the same size as the area covered
by the movable antennas in their different posi-
tions. This way interferometry is transformed into
a technique called aperture synthesis.

The theory and techniques of aperture synthe-
sis were developed particularly by the British as-
tronomer Sir Martin Ryle. In Fig. 3.33 the prin-
ciple of aperture synthesis is illustrated. If the
telescopes are located on an east—west track, the
spacing between them, projected onto the sky,
will in 12 hours describe a circle or an ellipse, de-
pending on the position of the source as the Earth
rotates around its axis. If one varies the distance
between the telescopes, one will get a series of
circles or ellipses on the sky. As we can see from
Fig. 3.29, one does not have to cover all the spac-
ings between the telescopes, because any antenna
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Fig. 3.33 To illustrate the principle of aperture synthe-
sis, let us consider an east—west oriented interferometer
pointed towards the celestial north. Each antenna is iden-
tical, has a diameter D and operates at a wavelength A.
The minimum spacing between each antenna element is a,
and the maximum spacing is 6a. In (a) there are only
two antennas, A and B, displaced by the maximum spac-
ing 6a. When the earth rotates, antennas A and B will,
in the course of 12 hours, track a circle on the plane of
the sky with a diameter A/(6a), the maximum resolution
that can be achieved with this interferometer. In (b) the
antenna C is added to the interferometer, thus providing
two more baselines, which track the circles AC and BC
with radii of A/(2a) and 1 /(4a), respectively. In (c) there
is still another antenna D added to the interferometer. In
this case two of the baselines are equal, AD and CD, and
therefore only two new circles are covered on the plane
of the sky. By adding more interferometer elements, one
can fill in the missing parts within the primary beam, i.e.
the beam of one single dish, and thus obtain a full cov-
erage of the beam. The resolution of the system depends
on the maximum separation of the antennas. It is evident
from (c), that not all of the antenna positions are needed to
provide all the different spacings; some antenna spacings
will in such a case be equal and therefore provide no addi-
tional information. It is essential to position the antennas
in such a way that as many different baselines as possi-
ble are formed. The observed values and the image of the
target are related by a Fourier transform

combination which has the same relative distance
will describe the same path on the sky. In this way
one can synthesise an antenna, a filled aperture,
with a size equal to the maximum spacing be-
tween the telescopes. Interferometers working ac-
cording to this principle are called aperture syn-
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Fig. 3.34 The VLA at Socorro, New Mexico, is a synthesis telescope consisting of 27 movable antennas

thesis telescopes. If one covers all the spacings up
to the maximum baseline, the result will be an ac-
curate map of the source over the primary beam
of an individual antenna element. Aperture syn-
thesis telescopes therefore produce an image of
the sky, i.e. a “radio photograph”.

A typical aperture synthesis telescope consists
of one fixed telescope and a number of mov-
able telescopes, usually located on an east—west
track, although T or Y configurations are also
quite common. The number of telescopes used
determines how fast one can synthesise a larger
disk, because the number of possible antenna
combinations increases as n(n — 1), where n is
the number of telescopes. It is also possible to
synthesise a large telescope with only one fixed
and one movable telescope by changing the spac-
ing between the telescopes every 12 hours, but
then a full aperture synthesis can require several
months of observing time. In order for this tech-
nique to work, the source must be constant, i.e.
the signal cannot be time variable during the ob-
serving session.

The most efficient aperture synthesis tele-
scopes at present are the VLA (Very Large Array)

in New Mexico, USA (Fig. 3.34) and ALMA in
Chile.

VLA consists of 27 paraboloid antennas, each
with a diameter of 25 m, which are located on
a Y-shaped track. The Y-formation was chosen
because it provides a full aperture synthesis in
8 hours. Each antenna can be moved by a spe-
cially built carrier, and the locations of the tele-
scopes are chosen to give optimal spacings for
each configuration. In the largest configuration
each arm is about 21 km long, thereby resulting
in an antenna with an effective diameter of 35 km.
If the VLA is used in its largest configuration
and at its highest frequency, 23 GHz (1.3 cm),
the resolution achieved is 0.1 arc second, clearly
superior to any optical telescope. Similar resolu-
tion can also be obtained with the British MER-
LIN telescope, where already existing telescopes
have been coupled together by radio links. Other
well-known synthesis telescopes are the Cam-
bridge 5 km array in Britain and the Westerbork
array in the Netherlands, both located on east—
west tracks.

Even higher resolution can be obtained with
an extension of the aperture synthesis technique,
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called VLBI (Very Long Baseline Interferome-
try). With the VLBI technique the spacing be-
tween the antennas is restricted only by the size
of the Earth. Some of the antennas can even be
on satellites, in which case the baseline can be
arbitrarily long. The antennas are all pointed to-
wards the same source. The signal is recorded to-
gether with accurate timing signals from atomic
clocks. The data files are correlated against each
other, resulting in maps similar to those obtained
with a normal aperture synthesis telescope. With
VLBI techniques it is possible to achieve resolu-
tions of 0.00001” if one of the telescopes is or-
biting the Earth. Because interferometry is very
sensitive to the distance between the telescopes,
the VLBI technique also provides one of the most
accurate methods to measure distances. Currently
one can measure distances with an accuracy of
a few millimetres on intercontinental baselines.
This is utilised in geodetic VLBI experiments,
which study continental drift and polar motion as
a function of time.

In radio astronomy the maximum size of sin-
gle antennas has also been reached. The trend
is to build synthesis antennas. In the 1990’s The
United States built a chain of antennas extending
across the whole continent, and the Australians
have constructed a similar, but north—south an-
tenna chain across their country.

More and more observations are being made
in the submillimetre region. The disturbing effect
of atmospheric water vapour becomes more se-
rious at shorter wavelengths; thus, submillimetre
telescopes must be located on mountain tops, like
optical telescopes. All parts of the mirror are ac-
tively controlled in order to accurately maintain
the proper form like in the new optical telescopes.
Several new submillimetre telescopes are under
construction.

3.5 Other Wavelength Regions

The Earth receives electromagnetic radiation
from the sky at all wavelengths However, as
mentioned in Sect. 3.1, not all radiation reaches
the ground. The wavelength regions absorbed by
the atmosphere have only been studied more ex-
tensively since the 1970’s, using Earth-orbiting

satellites (Fig. 3.37). Besides the optical and ra-
dio regions, there are only some narrow wave-
length ranges in the infrared that can be observed
from high mountain tops.

The first observations in each new wavelength
region were usually carried out from balloons, but
not until rockets came into use could observa-
tions be made from outside the atmosphere. The
first actual observations of an X-ray source, for
instance, were made on a rocket flight in June
1962, when the detector rose above the atmo-
sphere for about 6 minutes. Finally, Earth orbiting
satellites have made it possible to map the whole
sky in the wavelength regions invisible from the
ground.

Gamma Radiation Gamma ray astronomy
studies radiation quanta with energies of
10°-10'# eV. The boundary between gamma and
X-ray astronomy, 10° eV, corresponds to a wave-
length of 10~!! m. The boundary is not fixed; the
regions of hard (= high-energy) X-rays and soft
gamma rays partly overlap.

While ultraviolet, visible and infrared radia-
tion are all produced by changes in the energy
states of the electron envelopes of atoms, gamma
and hard X-rays are produced by transitions in
atomic nuclei or in mutual interactions of ele-
mentary particles. Thus observations of the short-
est wavelengths give information on processes
different from those giving rise to longer wave-
lengths.

The first observations of gamma sources were
obtained at the end of the 1960’s, when a device
in the OSO 3 satellite (Orbiting Solar Observa-
tory) detected gamma rays from the Milky Way.
Later on, many satellites have been especially
designed for gamma astronomy. The most re-
cent satellites include the Compton Gamma Ray
Observatory, operating in 1991-2000, the Euro-
pean Integral, launched in 2002, and the Ameri-
can Fermi, originally called GLAST.

The quanta of gamma radiation have energies
a million times greater than those of visible light,
and therefore they cannot be observed with sim-
ilar detectors. Observations are made with vari-
ous scintillation detectors, usually composed of
several layers of detector plates, where gamma
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Fig. 3.35 The MAGIC telescope on La Palma in the Ca-
nary islands observes the Cherenkov radiation produced
by gamma rays. (Photo Robert Wagner, Max Planck Insti-
tut fiir Physik)

radiation is transformed by the photoelectric ef-
fect into visible light, detectable by photomulti-
pliers.

The energy of a gamma quantum can be deter-
mined from the depth to which it penetrates the
detector. Analysing the trails left by the quanta
gives information on their approximate direction.
The field of view is limited by the grating. The
directional accuracy is low, and in gamma astron-
omy the resolution is still far below that of other
wavelength regions.

Gamma radiation cannot pass through the at-
mosphere, yet it has effects that can be observed
with ground based instruments. When a high-
energy photon enters the atmosphere it can cre-
ate particle-antiparticle pairs. These particles can
get such a high energy that they move faster than
the local speed of light in the atmosphere. Such
particles radiate Cherenkov radiation that can be
detected as visible light (Fig. 3.35).

X-rays The observational domain of X-ray as-
tronomy includes the energies between 10> and
10° eV, or the wavelengths 10-0.01 nm. The re-
gions 10-0.1 nm and 0.1-0.01 nm are called soft

and hard X-rays, respectively. X-rays were dis-
covered in the late 19th century. Systematic stud-
ies of the sky at X-ray wavelengths only became
possible in the 1970’s with the advent of satellite
technology.

The first all-sky mapping was made in the
early 1970’s by SAS 1 (Small Astronomical
Satellite), also called Uhuru. At the end of the
1970’s, two High-Energy Astronomy Observa-
tories, HEAO 1 and 2 (the latter called Einstein),
mapped the sky with much higher sensitivity than
Uhuru.

The Einstein Observatory was able to detect
sources about a thousand times fainter than ear-
lier X-ray telescopes. In optical astronomy, this
would correspond to a jump from a 15 cm reflec-
tor to a 5 m telescope. Thus X-ray astronomy has
developed in 20 years as much as optical astron-
omy in 300 years.

The latest X-ray satellites have been the Amer-
ican Chandra and the European XMM-Newton,
both launched in 1999.

Besides satellites mapping the whole sky,
there have been several satellites observing the X-
ray radiation of the Sun. The most recent ones are
the Japanese Yohkoh and Hinode and the Ameri-
can RHESSI.

The first X-ray telescopes used detectors sim-
ilar to those in gamma astronomy. Their di-
rectional accuracy was never better than a few
arc minutes. The more precise X-ray telescopes
utilise the principle of grazing reflection
(Fig. 3.36). An X-ray hitting a surface perpendic-
ularly is not reflected, but absorbed. If, however,
X-rays meet the mirror nearly parallel to its sur-
face, just grazing it, a high quality surface can
reflect the ray.

The mirror of an X-ray reflector is on the in-
ner surface of a slowly narrowing cone. The outer
part of the surface is a paraboloid and the inner
part a hyperboloid. The rays are reflected by both
surfaces and meet at a focal plane. In practice,
several tubes are installed one within another. For
instance, the four cones of the Einstein Obser-
vatory had as much polished optical surface as
a normal telescope with a diameter of 2.5 m. The
resolution in X-ray telescopes is of the order of
a few arc seconds and the field of view about
1 deg.
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Fig.3.36 X-rays are not reflected by an ordinary mirror,
and the principle of grazing reflection must be used for
collecting them. Radiation meets the paraboloid mirror at
a very small angle, is reflected onto a hyperboloid mirror

The detectors in X-ray astronomy are usually
Geiger—Miiller counters, proportional counters
or scintillation detectors. Geiger—Miiller and pro-
portional counters are boxes filled with gas. The
walls form a cathode, and an anode wire runs
through the middle of the box; in more accu-
rate counters, there are several anode wires. An
X-ray quantum entering the box ionises the gas,
and the potential difference between the anode
and cathode gives rise to a current of electrons
and positive ions. In recent imaging instruments
(like the ACIS in Chandra) also CCD cameras are
used.

Ultraviolet Radiation Between X-rays and the
optical region lies the domain of ultraviolet radi-
ation, with wavelengths between 10 and 400 nm.
Most ultraviolet observations have been carried
out in the soft UV region, at wavelengths near
those of optical light, since most of the UV radi-
ation is absorbed by the atmosphere. The wave-
lengths below 300 nm are completely blocked
out. The short wavelength region from 10 to
91.2 nm is called the extreme ultraviolet (EUYV,
XUV).

Extreme ultraviolet was one of the last regions
of the electromagnetic radiation to be observed
systematically. The reason for this is that the ab-
sorption of interstellar hydrogen makes the sky
practically opaque at these wavelengths. The vis-
ibility in most directions is limited to some hun-
dred light years in the vicinity of the Sun. In some
directions, however, the density of the interstellar

el

and further to a focal point. In practice, several mirrors are
placed one inside another, collecting radiation in a com-
mon focus

gas is so low that even extragalactic objects can
be seen.

The first dedicated EUV satellite was the Ex-
treme Ultraviolet Explorer (EUVE), operating in
1992-2000. It observed about a thousand EUV
sources. In EUV grazing reflection telescopes
similar to those used in X-ray astronomy are em-
ployed.

In nearly all branches of astronomy important
information is obtained by observations of ultra-
violet radiation. Many emission lines from stel-
lar chromospheres or coronas, the Lyman lines of
atomic hydrogen, and most of the radiation from
hot stars are found in the UV domain. In the near-
ultraviolet, telescopes can be made similar to op-
tical telescopes and, equipped with a photome-
ter or spectrometer, installed in a satellite orbiting
the Earth.

The most effective satellites in the UV have
been the European TD-1, the American Orbit-
ing Astronomical Observatories OAO 2 and 3
(Copernicus), and the International Ultraviolet
Explorer IUE. The instruments of the TD-1 satel-
lite included both a photometer and a spectrome-
ter. The satellite measured the magnitudes of over
30,000 stars in four different spectral regions be-
tween 135 and 274 nm, and registered UV spec-
tra from over 1000 stars. The OAO satellites were
also used to measure magnitudes and spectra, and
OAO 3 worked for over eight years.

The IUE satellite, launched in 1978, was one
of the most successful astronomical satellites.
IUE had a 45 cm Ritchey-Chrétien telescope with
an aperture ratio of f/15 and a field of view of
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Fig. 3.37 (a) The European X-ray satellite XMM-
Newton was launched in 1999. (Drawing D. Ducros,
XMM Team, ESA.) (b) FUSE satellite has photographed

16 arc minutes. The satellite had two spectro-
graphs to measure spectra of higher or lower res-
olution in wavelength intervals of 115-200 nm

far ultraviolet objects from Earth orbit since 1999. (Graph-
ics NASA/JHU Applied Physics Laboratory)

or 190-320 nm. For registration of the spec-
tra, a Vidicon camera was used. IUE was differ-
ent from earlier satellites, since it could be used
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almost like ground based telescopes. The ob-
server could follow the observations and change
them in real time. IUE worked on the orbit for
20 years.

The Hubble space telescope can also make
observations in the ultraviolet. Some ultraviolet
telescopes have also been on shuttle flight in the
1990’s.

Infrared Radiation Radiation with longer
wavelengths than visible light is called infrared
radiation. This region extends from about 1 mi-
crometre to 1 millimetre, where the radio region
begins. Sometimes the near-infrared, at wave-
lengths below 5 pum, and the submillimetre do-
main, at wavelengths between 0.1 and 1 mm, are
considered separate wavelength regions.

In infrared observations radiation is collected
by a telescope, as in the optical region. The in-
coming radiation consists of radiation from the
object, from the background and from the tele-
scope itself. Both the source and the background
must be continually measured, the difference giv-

Fig. 3.38 Refractors are not suitable for infrared tele-
scopes, because infrared radiation cannot penetrate glass.
The Cassegrain reflectors intended especially for infrared
observations have secondary mirrors nodding rapidly back
and forth between the object and the background near the
object. By subtracting the brightness of the background
from the brightness of the object, the background can be
eliminated

ing the radiation from the object. The background
measurements can be made with a Cassegrain
secondary mirror oscillating between the source
and the background at a rate of, say, 100 oscil-
lations per second, and thus the changing back-
ground can be eliminated (Fig. 3.38). To register
the measurements, semiconductor detectors are
used. The detector must always be cooled to min-
imise its own thermal radiation. Sometimes the
whole telescope is cooled.

Infrared observatories have been built on high
mountain tops, where most of the atmospheric
water vapour remains below. Some favourable
sites are, e.g. Mauna Kea on Hawaii, Mount
Lemon in Arizona and Pico del Teide on Tenerife.
For observations in the far-infrared these moun-
tains are not high enough; these observations are
carried out, e.g. on aeroplanes. One of the best-
equipped planes is the Kuiper Airborne Observa-
tory KAQO, named after the well-known planetary
scientist Gerard Kuiper.

Balloons and satellites are also used for in-
frared observations. The first powerful infrared
observatory was the InfraRed Astronomy Satel-
lite IRAS, built by the United States and Holland
and launched in 1983. It made observations for
eight months and mapped the sky at four wave-
lengths (12, 25, 60 and 100 um), and found over
200,000 new infrared sources.

The European Infrared Space Observatory
ISO, made more detailed observations of thou-
sands of infrared objects in 1996-1998. Since
2003 Spitzer (originally SIRTF, Space InfraRed
Telescope Facility). has been mapping the in-
frared sky. In 2009 ESA launched its own Her-
schel satellite (Fig. 3.39), which operated till
2013, when the liquid helium used for cooling
was exhausted.

Infrared satellites have also been used to map
the afterglow of the big bang of the universe.
A very successful satellite was the 1989 launched
COBE (Cosmic Background Explorer), which
mapped the background radiation in submillime-
tre and infrared wavelengths. The Microwave
Anisotropy Probe (MAP) has continued the work
of COBE, starting in 2001. In 2009 the even
more powerful European Planck satellite was
launched.
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Fig.3.39 The European
Herschel launched in 2009
was the most efficient
recent infrared satellite.
The diameter of its main
mirror, 3.5 metres, was
bigger than in any earlier
astronomical satellite. The
final shape to the highly
curved mirror was given by
the Opteon company at the
Tuorla observatory in
Finland. The observations
ended in 2103 when the
liquid helium used to cool
down the camera ran out.
(Photos ESA, Rami
Rekola)

3.6  Other Forms of Energy

Besides electromagnetic radiation, energy arrives
from space in other forms: particles (cosmic rays,
neutrinos) and gravitational radiation.

Cosmic Rays Cosmic rays, consisting of elec-
trons and totally ionised nuclei of atoms, are re-
ceived in equal amounts from all directions. Their
incoming directions do not reveal their origin,

since cosmic rays are electrically charged; thus
their paths are continually changed when they
move through the magnetic fields of the Milky
Way. The high energies of cosmic rays mean that

they have to be produced by high-energy phe-
nomena like supernova explosions. The major-
ity of cosmic rays are protons (nearly 90 %)
and helium nuclei (10 %), but some are heav-
ier nuclei; their energies lie between 103 and
102 eV.
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Fig. 3.39 (Continued)

The most energetic cosmic rays give rise to
secondary radiation, mainly muons, when they
hit molecules of the atmosphere. This secondary
radiation can be observed from the ground. Just
like particles produces by gamma rays particles
of the secondary radiation can move faster than
light in the atmosphere emitting Cerenkov radi-
ation. Thus the cosmic rays can also be detected
by their Cerenkov radiation.

The Pierre Auger telescope in Argentina ob-
serves both secondary particles and Cerenkov ra-
diation to detect cosmic rays with energies at least
of the order of 10'® eV. Since only about one
such particle hits an area of one square kilometre
in a century, the detectors have been positioned in
an area of 3000 square kilometres.

Primary cosmic rays can only be directly ob-
served outside the atmosphere. The detectors
used to observe cosmic rays are similar to those
used in particle physics. Since Earth-based accel-
erators reach energies of only about 10'% eV, cos-
mic rays offer an excellent “natural” laboratory
for particle physics. Many satellites and space-
craft have detectors for cosmic rays.

Neutrinos Neutrinos are elementary particles
with no electric charge. Earlier it was thought that

they are massless, but currently they seem to have
a tiny rest mass. They interact with other mat-
ter only through the weak nuclear force, which
is very much weaker than the electromagnetic or
strong nuclear force.

Most neutrinos are produced in nuclear reac-
tions within stars and in supernova explosions.
Since they react very weakly with other matter,
they escape directly from the stellar interior.

Due to their weak interaction neutrinos are
very difficult to observe; trillions of them pass
through this page every second without any no-
ticeable consequences.

The first method of detection was the radio-
chemical method. As a reactive agent, e.g. tetra-
chloroethene (C,Cly) can be used. When a neu-
trino hits a chlorine atom, the chlorine is trans-
formed into argon, and an electron is freed:

ICl+v—Ar+e .

The argon atom is radioactive and can be ob-
served. Instead of chlorine, lithium and gallium
might be used to detect neutrinos. The first gal-
lium detectors have been running in Italy and
Russia from the end of the 1980’s.

Another observation method is based on the
Cerenkov radiation produced by neutrinos in ex-
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Fig. 3.40 The Sudbury neutrino observatory (SNO) is at
the depth of two kilometres in a still operational mine. The
spherical vessel contains liquid where neutrinos produce
Cherenkov radiation. 9600 photomultipliers are used to
register the flashes of the radiation. Earlier the liquid was
heavy water but that was later replaced with alkyl benzene.
The observations have already solved the solar neutrino
problem (Sect. 13.1). The new SNO+ will be able to ob-
serve neutrinos of even lower energies. (Photos SNOlab,
H. Karttunen)

tremely pure water. The flashes of light are regis-
tered with photomultipliers, and thus it is possi-
ble to find out the direction of the radiation. This
method is used e.g. in the Japanese Kamiokande
detector and in the Sudbury neutrino observatory
in Canada (Fig. 3.40).

The largest neutrino detector is the IceCube in
the Antarctic, finished in 2010. It consists of one
cubic kilometre of ice.

Neutrino detectors must be located deep under
the ground to protect them from the secondary
radiation caused by cosmic rays. Also radioactive
decay inside the Earth cases background noise.

The detectors have observed neutrinos from
the Sun, and the Supernova 1987A in the Large
Magellanic Cloud was also observed in 1987. In
the future, also the dark matter and other neutrino
producing phenomena will be studied.

Gravitational Radiation Gravitational astron-
omy is as young as neutrino astronomy. The
first attempts to measure gravitational waves were
made in the 1960’s. Gravitational radiation is
emitted by accelerating masses, just as electro-
magnetic radiation is emitted by electric charges
in accelerated motion. Detection of gravitational
waves is very difficult, and they have been ob-
served only very recently.

The first type of gravitational wave antenna
was the Weber cylinder. It is an aluminium cylin-
der which starts vibrating at its proper frequency
when hit by a gravitational pulse. The distance
between the ends of the cylinder changes by
about 10~!7 m, and the changes in the length are
studied by strain sensors welded to the side of the
cylinder.

Another type of modern gravity radiation de-
tectors measures “spatial strain” induced by grav-
ity waves and consists of two sets of mirrors in
directions perpendicular to each other (Michel-
son interferometer), or one set of parallel mir-
rors (Fabry—Perot interferometer). The relative
distances between the mirrors are monitored by
laser interferometers. If a gravity pulse passes the
detector, the distances change and the changes
can be measured. The longest baseline between
the mirrors is in the American LIGO (Laser Inter-
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Fig. 3.41 The LIGO Livingston Observatory seen from
the air. (Photo LIGO/Caltech)

ferometer Gravitational-wave Observatory) sys-
tem (Fig. 3.41). LIGO made the first scientific
observations in 2002. In early 2016 the first pos-
itive detection of gravitational waves was an-
nounced. The observation was made in Septem-
ber 14, 2015.

Although the gravitational detectors are iso-
lated from their surroundings as carefully as pos-
sible, many perturbations can make them oscil-
late. A positive detection requires that the same
phenomenon is observed by different instruments
located far away from each others.

Box 3.1 (Diffraction by a Circular Aperture)
Consider a circular hole of radius R in the
xy plane. Coherent light enters the hole from
the direction of the negative z axis (see fig-
ure). We consider light rays leaving the hole
parallel to the xz plane forming an angle 6
with the z axis. The light waves interfere on
a screen far away. The phase difference be-
tween a wave through a point (x, y) and a wave
going through the centre of the hole can be
calculated from the different path lengths s =
xsinf:

27 sinf

S = T = X =KX.

s
A

Thus, the phase difference § depends on the
x coordinate only. The sum of the amplitudes
of the waves from a small surface element is
proportional to the area of the element dx dy.
Let the amplitude coming through the centre of
the hole be dag = dx dyf. The amplitude com-
ing from the point (x, y) is then

da:dxdy(cos8f+sin8f).

da

15}
dao

We sum up the amplitudes coming from dif-
ferent points of the hole:

a= / da
Aperture

VR
- /xR /ysz(

R ~ ~
:2/ V' R? — x?(coskxi +sinkx j ) dx.
—R

coskxi + sinkx f) dydx
=—R

Since sine is an odd function (sin(—kx) =
—sin(kx)), we get zero when we integrate the
second term. Cosine is an even function, and so

R
aoc/ vV R? — x2coskx dx.
0
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We substitute x = Rt and define p = kR =
(2mrsinf) /A, thus getting

1
aoc[ V1 —1t2cos ptdt.
0

The zero points of the intensity observed on
the screen are obtained from the zero points of
the amplitude,

1
J(p):/ V1 —1t2cos ptdt =0.
0

Inspecting the function J(p), we see that the
first zero is at p = 3.8317, or

277 Rsin
RSN _ 38317

The radius of the diffraction disk in angular
units can be estimated from the condition
3.8317x A
= ~1.22—,
27 R D

sinf

where D = 2R is the diameter of the hole.

In mirror telescopes diffraction is caused
also by the support structure of the secondary
mirror. If the aperture is more complex and
only elementary mathematics is used calcula-
tions may become rather cumbersome. How-
ever, it can be shown that the diffraction pattern
can be obtained as the Fourier transform of the
aperture.

3.7 Examples

Example 3.1 The distance between the compo-
nents of the binary star { Herculis is 1.38”. What
should the diameter of a telescope be to resolve
the binary? If the focal length of the objective is
80 cm, what should the focal length of the eye-
piece be to resolve the components, when the res-
olution of the eye is 2'?

In the optical region, we can use the wave-
length value of A ~ 550 nm. The diameter of the
objective is obtained from the equation for the

resolution (3.4),

550 x 1072 .
(1.38/3600) x (7r/180)

=0.08 m =8 cm.

A
D~ — =
0

The required magnification is

2/
w = =
1.38”

The magnification is given by

_ S
f

and, thus, the focal length of the eyepiece should
be

f,:£:800m:

0.9 cm.
w 87 om

Example 3.2 A telescope has an objective with
a diameter of 90 mm and focal length of 1200 mm.

(a) What is the focal length of an eyepiece, the
exit pupil of which is 6 mm (about the size of
the pupil of the eye)?

(b) What is the magnification of such an eye-
piece?

(c) What is the angular diameter of the Moon
seen through this telescope and eyepiece?

(a) From Fig. 3.7 we get

L:L/D,
f

whence

£ =5 1200 mm 200
D 90 mm

= 80 mm.

(b) The magnification is w = f/f’ = 1200 mm/
80 mm = 15.

(c) Assuming the angular diameter of the Moon
is o = 31’ = 0.52°, its diameter through the
telescope is wa = 7.8°.
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3.8 Exercises

Exercise 3.1 The Moon was photographed with
a telescope, the objective of which had a diameter
of 20 cm and focal length of 150 cm. The expo-
sure time was 0.1 s.

(a) What should the exposure time be, if the di-
ameter of the objective were 15 cm and focal
length 200 cm?

(b) What is the size of the image of the Moon in
both cases?

(c) Both telescopes are used to look at the Moon
with an eyepiece the focal length of which is
25 mm. What are the magnifications?

Exercise 3.2 The radio telescopes at Ambherst,
Massachusetts, and Onsala, Sweden, are used as
an interferometer, the baseline being 2900 km.

(a) What is the resolution at 22 GHz in the direc-
tion of the baseline?

(b) What should be the size of an optical tele-
scope with the same resolution?
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Most astronomical observations utilise electro-
magnetic radiation in one way or another. We can
obtain information on the physical nature of a ra-
diation source by studying the energy distribution
of its radiation. We shall now introduce some ba-
sic concepts that characterise electromagnetic ra-
diation.

4.1 Intensity, Flux Density and

Luminosity

Let us assume we have some radiation passing
through a surface element dA (Fig. 4.1). Some of
the radiation will leave dA within a solid angle
dw; the angle between dw and the normal to the
surface is denoted by 6. The amount of energy
with frequency in the range [v, v 4+ dv] entering
this solid angle in time df is

dE, =1,cos6dAdvdwdr. “.1)

Here, the coefficient I, is the specific intensity
of the radiation at the frequency v in the di-
rection of the solid angle dw. Its dimension is
Wm~2Hz ! sterad~!.

The projection of the surface element dA as
seen from the direction 6 is dA, = dAcos6,
which explains the factor cos6. If the intensity
does not depend on direction, the energy dE, is
directly proportional to the surface element per-
pendicular to the direction of the radiation.

The intensity including all possible frequen-
cies is called the fotal intensity I, and is obtained

© Springer-Verlag Berlin Heidelberg 2017

Fig. 4.1 The intensity /, of radiation is related to the en-
ergy passing through a surface element dA into a solid
angle dw, in a direction 6

by integrating I, over all frequencies:

o0
I:/ I, dv.
0

More important quantities from the observa-
tional point of view are the energy flux (L,, L)
or, briefly, the flux and the flux density (F,, F).
The flux density gives the power of radiation per
unit area; hence its dimension is Wm 2 Hz !
or Wm~2, depending on whether we are talking
about the flux density at a certain frequency or
about the total flux density.

Observed flux densities are usually rather
small, and Wm—2 would be an inconveniently
large unit. Therefore, especially in radio astron-
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omy, flux densities are often expressed in Jan-
skys; one Jansky (Jy) equals 10726 Wm~=2Hz~!.

When we are observing a radiation source, we
in fact measure the energy collected by the de-
tector during some period of time, which equals
the flux density integrated over the radiation-
collecting area of the instrument and the time in-
terval.

The flux density F, at a frequency v can be
expressed in terms of the intensity as

1
Fv=7/dEv
dAdvdr Js

=/ I, cosfdw,
N

where the integration is extended over all possible
directions. Analogously, the total flux density is

“4.2)

F=/Icos€dw.
N

For example, if the radiation is isotropic, i.e. if
I is independent of the direction, we get

F=/Icos(9da)=1/cos€dw. “4.3)
S s

The solid angle element dw is equal to a surface
element on a unit sphere. In spherical coordinates
itis (Fig. 4.2; also cf. Appendix A.5):

dw = sin@ do de.

Substitution into (4.3) gives

b4 2
F:I/ / cos®sinf df d¢ =0,
0=0J¢=0

so there is no net flux of radiation. This means
that there are equal amounts of radiation entering
and leaving the surface. If we want to know the
amount of radiation passing through the surface,
we can find, for example, the radiation leaving the
surface. For isotropic radiation this is

/2 2w
F1=I/ / cosfsinfddodgp =mxl. (4.4)
6=0Jp=0

In the astronomical literature, terms such as
intensity and brightness are used rather vaguely.

d¢ sin 6

Fig. 4.2 An infinitesimal solid angle dw is equal to
the corresponding surface element on a unit sphere:
dw = sin6 d6 d¢

Flux density is hardly ever called flux density
but intensity or (with luck) flux. Therefore the
reader should always carefully check the mean-
ing of these terms.

Flux means the power going through some
surface, expressed in watts. The flux emitted by
a star into a solid angle w is L = wr?F, where
F is the flux density observed at a distance r. To-
tal flux is the flux passing through a closed sur-
face encompassing the source. Astronomers usu-
ally call the total flux of a star the luminosity L.
We can also talk about the luminosity L, at a fre-
quency v ([L,] = WHz ™). (This must not be
confused with the luminous flux used in physics;
the latter takes into account the sensitivity of the
eye.)

If the source (like a typical star) radiates
isotropically, its radiation at a distance r is dis-
tributed evenly on a spherical surface whose area
is 4772 (Fig. 4.3). If the flux density of the radi-
ation passing through this surface is F, the total
flux is

L =4nr’F. (4.5)

If we are outside the source, where radiation is
not created or destroyed, the luminosity does not
depend on distance. The flux density, on the other
hand, falls off proportional to 1/72.
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For extended objects (as opposed to objects
such as stars visible only as points) we can de-
fine the surface brightness as the flux density per
unit solid angle (Fig. 4.4). Now the observer is at
the apex of the solid angle. The surface bright-
ness is independent of distance, which can be un-
derstood in the following way. The flux density
arriving from an area A is inversely proportional
to the distance squared. But also the solid an-
gle subtended by the area A is proportional to
1/r? (w = A/r?). Thus the surface brightness
B = F /o remains constant.

Fig.4.3 Anenergy flux which at a distance r from a point
source is distributed over an area A is spread over an
area 4A at a distance 2r. Thus the flux density decreases
inversely proportional to the distance squared

Fig. 4.4 An observer sees
radiation coming from

a constant solid angle .
The area giving off
radiation into this solid
angle increases when the
source moves further away
(A < r?). Therefore the

The energy density u of radiation is the amount
of energy per unit volume (Jm™3):

1
u:—/[dw.
cJs

This can be seen as follows. Suppose we have ra-
diation with intensity / arriving from a solid an-
gle dw perpendicular to the surface dA (Fig. 4.5).
In the time dt, the radiation travels a distance ¢ d¢
and fills a volume dV = c¢dr dA. Thus the energy
in the volume dV is (now cosf = 1)

(4.6)

1
dE =1dAdwdt = -1dwdV.
c

Hence the energy density du of the radiation ar-
riving from the solid angle dw is

dE 1

dy = — = -1 do,

dv. ¢
and the total energy density is obtained by inte-
grating this over all directions. For isotropic radi-
ation we get

U= 4—JTI. 4.7
Cc
4.2 Apparent Magnitudes

As early as the second century B.C., Hipparchos
divided the visible stars into six classes according
to their apparent brightness. The first class con-
tained the brightest stars and the sixth the faintest
ones still visible to the naked eye.

surface brightness or the
observed flux density per
unit solid angle remains
constant
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dr
— ——————
dv dA — do
—

Fig. 4.5 In time dr, the radiation fills a volume
dV = cdrdA, where dA is the surface element perpen-
dicular to the propagation direction of the radiation

The response of the human eye to the bright-
ness of light is not linear. If the flux densities
of three stars are in the proportion 1:10:100, the
brightness difference of the first and second star
seems to be equal to the difference of the second
and third star. Equal brightness ratios correspond
to equal apparent brightness differences: the hu-
man perception of brightness is logarithmic.

The rather vague classification of Hipparchos
was replaced in 1856 by Norman R. Pogson. The
new, more accurate classification followed the old
one as closely as possible, resulting in another of
those illogical definitions typical of astronomy.
Since a star of the first class is about one hun-
dred times brighter than a star of the sixth class,
Pogson defined the ratio of the brightnesses of
classesn and n + 1 as m =2.512.

The brightness class or magnitude can be de-
fined accurately in terms of the observed flux den-
sity F ([F] =W m™?2). We decide that the magni-
tude O corresponds to some preselected flux den-
sity Fp. All other magnitudes are then defined by
the equation

F
m=-—-25lg—.
Fo

4.8)
Note that the coefficient is exactly 2.5, not 2.512!
Magnitudes are dimensionless quantities, but to
remind us that a certain value is a magnitude, we
can write it, for example, as 5 mag or 5™.

It is easy to see that (4.8) is equivalent to Pog-
son’s definition. If the magnitudes of two stars
are m and m + 1 and their flux densities Fj,
and Fy, 11, respectively, we have

Fm—H
Fy

Fy
m—(m+1)=-25lg-" +2.5Ig
Fy

F,
=-25lg—",
m+1

whence
F
Fm +1

=/100.

In the same way we can show that the magnitudes
m1 and my, of two stars and the corresponding
flux densities £ and F; are related by
mp —mop=-—251g ﬂ “4.9)
P

Magnitudes extend both ways from the orig-
inal six values. The magnitude of the brightest
star, Sirius, is in fact negative —1.5. The magni-
tude of the Sun is —26.8 and that of a full moon
—12.5. The magnitude of the faintest objects ob-
served depends on the size of the telescope, the
sensitivity of the detector and the exposure time.
The limit keeps being pushed towards fainter ob-
jects; currently the magnitudes of the faintest ob-

served objects are over 30.

4.3 Magnitude Systems

The apparent magnitude m, which we have just
defined, depends on the instrument we use to
measure it. The sensitivity of the detector is dif-
ferent at different wavelengths. Also, different
instruments detect different wavelength ranges.
Thus the flux measured by the instrument equals
not the total flux, but only a fraction of it. De-
pending on the method of observation, we can de-
fine various magnitude systems. Different mag-
nitudes have different zero points, i.e. they have
different flux densities Fp corresponding to the
magnitude 0. The zero points are usually defined
by a few selected standard stars.

In daylight the human eye is most sensitive to
radiation with a wavelength of about 550 nm, the
sensitivity decreasing towards red (longer wave-
lengths) and violet (shorter wavelengths). The
magnitude corresponding to the sensitivity of the
eye is called the visual magnitude m..

Photographic plates are usually most sensitive
at blue and violet wavelengths, but they are also
able to register radiation not visible to the hu-
man eye. Thus the photographic magnitude mp,
usually differs from the visual magnitude. The
sensitivity of the eye can be simulated by using
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a yellow filter and plates sensitised to yellow and
green light. Magnitudes thus observed are called
photovisual magnitudes m.y .

If, in ideal case, we were able to measure the
radiation at all wavelengths, we would get the
bolometric magnitude myo. In practice this is
very difficult, since part of the radiation is ab-
sorbed by the atmosphere; also, different wave-
lengths require different detectors. (In fact there
is a gadget called the bolometer, which, however,
is not a real bolometer but an infrared detector.)
The bolometric magnitude can be derived from
the visual magnitude if we know the bolometric
correction BC:

Mpo) = my — BC. (4.10)

By definition, the bolometric correction is zero
for radiation of solar type stars (or, more pre-
cisely, stars of the spectral class F5). Although the
visual and bolometric magnitudes can be equal,
the flux density corresponding to the bolometric
magnitude must always be higher. The reason of
this apparent contradiction is in the different val-
ues of Fp.

The more the radiation distribution differs
from that of the Sun, the higher the bolometric
correction is. The correction is positive for stars
both cooler or hotter than the Sun. Sometimes
the correction is defined as mpo = my + BC in
which case BC < 0 always. The chance for er-
rors is, however, very small, since we must have
Mpol < My.

The most accurate magnitude measurements
are made using photoelectric photometers or
CCD cameras. Usually filters are used to allow
only a certain wavelength band to enter the de-
tector. One of the multicolour magnitude sys-
tems used widely in photoelectric photometry is
the UBV system developed in the early 1950’s
by Harold L. Johnson and William W. Morgan.
Magnitudes are measured through three filters,
U =ultraviolet, B=blue and V =visual. Fig-
ure 4.6 and Table 4.1 give the wavelength bands
of these filters. The magnitudes observed through
these filters are called U, B and V magnitudes,
respectively.

The UBV system was later augmented by
adding more bands. One commonly used system

1.0
08
0.6
0.4
0.2

600

200 400 800 Alnm]

Fig. 4.6 Relative transmission profiles of filters used in
the UBVRI magnitude system. The maxima of the bands
are normalised to unity. The R and I bands are based on
the system of Johnson, Cousins and Glass, which includes
also infrared bands J, H, K, L and M. Previously used R
and I bands differ considerably from these. The curves of
the ugriz magnitudes (dashed lines) give quantum efficien-
cies. They include the atmospheric extinction for airmass
1.3 (Sect. 4.5)

Table 4.1 Wavelength bands of the UBVRI and uvby fil-
ters and their effective (~ average) wavelengths

Magnitude | Band Effective
width [nm] wavelength [nm]
U ultraviolet 66 367
B blue 94 436
\" visual 88 545
R |red 138 638
1 infrared 149 797
u ultraviolet 30 349
\ violet 19 411
b blue 18 467
y yellow 23 547

is the five colour UBVRI system, which includes
R =red and I = infrared filters.

There are also other broad band systems, but
they are not as well standardised as the UBV,
which has been defined moderately well using
a great number of standard stars all over the sky.
The magnitude of an object is obtained by com-
paring it to the magnitudes of standard stars.

In Stromgren’s four-colour or uvby system, the
bands passed by the filters are much narrower
than in the UBV system. The uvby system is also
well standardised, but it is not quite as common
as the UBV. Other narrow band systems exist as
well. By adding more filters, more information on
the radiation distribution can be obtained.
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In any multicolour system, we can define
colour indices; a colour index is the difference
of two magnitudes. By subtracting the B magni-
tude from U we get the colour index U — B, and
so on. If the UBV system is used, it is common to
give only the V magnitude and the colour indices
U—-Band B-V.

The constants Fy in (4.8) for U, B and V mag-
nitudes have been selected in such a way that the
colour indices B — V and U — B are zero for
stars of spectral type AO (for spectral types, see
Chap. 8). The surface temperature of such a star is
about 10,000 K. For example, Vega (« Lyr, spec-
tral class AOV)has V=004, B—V =U — B =
0.00. The Sunhas V = —-26.8, B—V = 0.64 and
U—-B=0.12.

Before the UBV system was developed, a
colour index C.I., defined as Cl. = mpz — my
was used. The definition shows that C.I. corre-
sponds to the colour index B — V. In fact, C.I. =
(B—-V)—0.11.

Nowadays it is becoming more customary to
use the AB system (ABsolute), in which Fj is
the same, 3631 Jy, for all wavelength bands. For
instance the ugriz magnitudes used by the Sloan
Digital Sky Survey (SDSS) are based on this sys-
tem. There are several different transformation
equations between the UBV and ugriz systems
for different kinds of objects. For ordinary stars,
we can use the following:

V =g —0.2906 (u — g) + 0.0885,
V =g —0.5784 (g — r) — 0.0038,
R=r—0.1837(g —r) — 0.0971,
R=r—0.2936 (r — i) — 0.1439,
[=r—1.2444 (r — i) — 0.3820,
I=i—0.3780(i —z) — 0.3974.

@11

4.4  Absolute Magnitudes

Thus far we have discussed only apparent mag-
nitudes. They do not tell us anything about the
true brightness of stars, since the distances differ.
A quantity measuring the intrinsic brightness of
a star is the absolute magnitude. It is defined as

Fig. 4.7 The apparent magnitude at a distance r depends
on the flux density F(r). The absolute magnitude is de-
fined as the apparent magnitude at a distance of 10 parsecs
from the star depending only on the flux density F'(10) 10
parsecs away from the star

the apparent magnitude at a distance of 10 par-
secs from the star (Fig. 4.7). Officially this defi-
nition was accepted in the general meeting of the
IAU in 1922.

We shall now derive an equation which relates
the apparent magnitude m, the absolute magni-
tude M and the distance r. Because the flux em-
anating from a star into a solid angle w has, at
a distance r, spread over an area wr?, the flux
density is inversely proportional to the distance
squared. Therefore the ratio of the flux density at
adistance r, F(r), to the flux density at a distance
of 10 parsecs, F(10), is

F(r) (10pc)’?
Faoy \ r )~
Thus the difference of magnitudes at r and 10 pc,
or the distance modulus m — M, is

10 pc\?
51g< pc)
,

(4.12)

g L0 _ o

m—M=-25 =
F(10)

or

m—M=5lg——.
10 pc

For historical reasons, this equation is almost al-
ways written as

m—M=5lgr—>5, (4.13)
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Fig. 4.8 The interstellar
medium absorbs and
scatters radiation; this
usually reduces the energy
flux L in the solid angle w
dL=0)

which is valid only if the distance is expressed in
parsecs. (The logarithm of a dimensional quan-
tity is, in fact, physically absurd.) Sometimes the
distance is given in kiloparsecs or megaparsecs,
which require different constant terms in (4.13).
To avoid confusion, we highly recommend the
form (4.12).

Absolute magnitudes are usually denoted by
capital letters. Note, however, that the U, B and
V magnitudes are apparent magnitudes. The cor-
responding absolute magnitudes are My, Mp and
My.

The absolute bolometric magnitude can be ex-
pressed in terms of the luminosity. Let the total
flux density at a distance r = 10 pc be F and let
Fo be the equivalent quantity for the Sun. Since
the luminosity is L = 47 r2F, we get

F
Mpol — Mpol,0 = —2.51g —
Fo

L/Amr?

—_25]g =
& Lo/dnr?

or
L
Myol — Mpol,o = —2.51g —. (4.14)
Lo

The absolute bolometric magnitude My, = 0 cor-
responds to a luminosity Lo = 3.0 x 102 W.

4.5 Extinction and Optical

Thickness

Equation (4.12) shows how the apparent magni-
tude increases (and brightness decreases!) with
increasing distance. If the space between the ra-
diation source and the observer is not completely
empty, but contains some interstellar medium,

(4.12) no longer holds, because part of the ra-
diation is absorbed by the medium (and usually
re-emitted at a different wavelength, which may
be outside the band defining the magnitude), or
scattered away from the line of sight. All these
radiation losses are called the extinction.

Now we want to find out how the extinction
depends on the distance. Assume we have a star
radiating a flux Lo into a solid angle w in some
wavelength range. Since the medium absorbs and
scatters radiation, the flux L will now decrease
with increasing distance » (Fig. 4.8). In a short
distance interval [r, r + dr], the extinction dL is
proportional to the flux L and the distance trav-
elled in the medium:

dL = —aLdr. (4.15)

The factor « tells how effectively the medium can
obscure radiation. It is called the opacity. From
(4.15) we see that its dimension is [«¢] = m~!.
The opacity is zero for a perfect vacuum and ap-
proaches infinity when the substance becomes re-
ally murky. We can now define a dimensionless
quantity, the optical thickness T by

dr =adr. 4.16)
Substituting this into (4.15) we get
dL =—Ldr.

Next we integrate this from the source (where
L = Lo and r = 0) to the observer:

/L dL /fd
—_ = -’:7
Ly L 0

L=1Lye ".

which gives

4.17)
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Here, 7 is the optical thickness of the material be-
tween the source and the observer and L, the ob-
served flux. Now, the flux L falls off exponen-
tially with increasing optical thickness. Empty
space is perfectly transparent, i.e. its opacity is
o = 0; thus the optical thickness does not in-
crease in empty space, and the flux remains con-
stant.

Let Fy be the flux density on the surface of
a star and F(r), the flux density at a distance r.
We can express the fluxes as

L=wr’F(r), Lo=wR*Fy,

where R is the radius of the star. Substitution into
(4.16) gives

R2
F(ry=Fy—e".
r

For the absolute magnitude we need the flux den-
sity at a distance of 10 parsecs, F(10), which is

still evaluated without extinction:
2
F(10) = F .
(10) = Fo {10 po)?

The distance modulus m — M is now

F(r)

m—M=-25lg
F(10)

—5lg—— —25lge "
N g10pc o8

—5lg—— +(2.51ge)T
10 pc
or

r
—M=5lg—+A,
" glOpc+

where A > 0 is the extinction in magnitudes due
to the entire medium between the star and the ob-
server. If the opacity is constant along the line of

sight, we have
.
T=u / dr =ar,
0

and (4.18) becomes

(4.18)

m—M:SlgL+ar,

4.19
10 pc (4.19)

where the constant a = 2.5« 1g e gives the extinc-
tion in magnitudes per unit distance.

Colour Excess Another effect caused by the in-
terstellar medium is the reddening of light: blue
light is scattered and absorbed more than red.
Therefore the colour index B — V increases. The
visual magnitude of a star is, from (4.18),

V=My+5lg—— + Ay, (4.20)
10 pc

where My is the absolute visual magnitude and

Ay is the extinction in the V passband. Similarly,

we get for the blue magnitudes

r
B:MB-i-SIngC-i-AB.

The observed colour index is now
B—V =Mp— My+ Ag — Ay,
or

B—V=(B-V)+Es-v, 4.21)

where (B — V)o = Mg — My is the intrinsic
colour of the star and Fg_yv = (B —V) — (B —
V)g is the colour excess. Studies of the interstel-
lar medium show that the ratio of the visual ex-
tinction Ay to the colour excess Eg_v is almost
constant for all stars:

Ay

R = ~ 3.0.
Eg_v

This makes it possible to find the visual extinction
if the colour excess is known:

Ay ~3.0 Eg_v. (4.22)

When Ay is obtained, the distance can be solved
directly from (4.19), when V and My are known.

We shall study interstellar extinction in more
detail in Sect. 15.1 (“Interstellar Dust”).

Atmospheric Extinction As we mentioned in
Sect. 3.1, the Earth’s atmosphere also causes ex-
tinction. The observed magnitude m depends on
the location of the observer and the zenith dis-
tance of the object, since these factors deter-
mine the distance the light has to travel in the
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Fig. 4.9 1If the zenith distance of a star is z, the light of
the star travels a distance H/ cos z in the atmosphere; H is
the height of the atmosphere

atmosphere. To compare different observations,
we must first reduce them, i.e. remove the at-
mospheric effects somehow. The magnitude m
thus obtained can then be compared with other
observations.

If the zenith distance z is not too large, we can
approximate the atmosphere by a plane layer of
constant thickness (Fig. 4.9). If the thickness of
the atmosphere is used as a unit, the light must
travel a distance

X =1/cosz=secz (4.23)

in the atmosphere. The quantity X is the air mass.

According to (4.18), the magnitude increases lin-

early with the distance X:
m=mqy+kX, (4.24)

where k is the extinction coefficient.

The extinction coefficient can be determined
by observing the same source several times dur-
ing a night with as wide a zenith distance range
as possible. The observed magnitudes are plot-
ted in a diagram as a function of the air mass X.
The points lie on a straight line the slope of
which gives the extinction coefficient k. When
this line is extrapolated to X = 0, we get the mag-
nitude mq, which is the apparent magnitude out-
side the atmosphere.

In practice, observations with zenith distances
higher than 70° (or altitudes less than 20°) are
not used to determine k and m, since at low al-
titudes the curvature of the atmosphere begins to
complicate matters. The value of the extinction
coefficient £ depends on the observation site and
time and also on the wavelength, since extinction
increases strongly towards short wavelengths.

4,6 Examples
Example 4.1 Show that intensity is independent
of distance.

Suppose we have some radiation leaving the
surface element dA in the direction 6. The energy
entering the solid angle dw in time dt is

dE =1cosfdAdwdt,

where [ is the intensity. If we have another sur-
face dA’ at a distance r receiving this radiation
from direction 6, we have

dw =dA’cosb'/r?.

The definition of the intensity gives

dE =I'cos0’dA’ do' dt,

where I’ is the intensity at dA” and

dew' =dAcos6/r?.
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Substitution of dw and dw’ into the expressions
of dE gives

dA’ cos6’

I cos6do dAi2 dr
r

dA cos6

—dr = I'=1.
,

=1'cosf’ dA’

Thus the intensity remains constant in empty
space.

Example 4.2 (Surface Brightness of the Sun)
Assume that the Sun radiates isotropically. Let R
be the radius of the Sun, F the flux density on
the surface of the Sun and F the flux density at
a distance r. Since the luminosity is constant,

L =47R*Fg =4nr’F,
the flux density equals

R2
F=Fors.
r

At a distance r > R, the Sun subtends a solid
angle

A_7rR2

w=—=—
r2 2

where A = 7 R? is the cross section of the Sun.
The surface brightness B is

_F_F@
T

B
Applying (4.4) we get
B=1Is.

Thus the surface brightness is independent of dis-
tance and equals the intensity. We have found
a simple interpretation for the somewhat abstract
concept of intensity.

The flux density of the Sun on the Earth, the
solar constant,is So ~ 1370 W m~2. The angular
diameter of the Sun is o = 32/, whence

R 1 3
e T 0.00465 rad.
F 272760 180

The solid angle subtended by the Sun is

R 2
a):ﬂ(—) =7 x 0.004652

r

=6.81 x 1077 sterad,

and the surface brightness

S
B="2_-201x10" Wm?sterad™".
w

Example 4.3 (Magnitude of a Binary Star)
Since magnitudes are logarithmic quantities, they
can be a little awkward for some purposes. For
example, we cannot add magnitudes like flux
densities. If the magnitudes of the components
of a binary star are 1 and 2, the total magnitude
is certainly not 3. To find the total magnitude, we
must first solve the flux densities from

1= 251 0 1= 2512
- . gF07 - . gF07

which give
F) = Fy x 107%4, F> = Fy x 107%8,
Thus the total flux density is
F=F +F=F(107% +1070%)

and the total magnitude,

F0(10_0'4 + 10—0.8)
Fo

=—2.51g0.5566 = 0.64.

m=-25lg

Example 4.4 The distance of a star is r =
100 pc and its apparent magnitude m = 6. What
is its absolute magnitude?

Substitution into (4.12)

— M =51
" glOpc
gives
M=6-5I 100—1
= g 10 =1.

Example 4.5 The absolute magnitude of a star
is M = —2 and the apparent magnitude m = 8.
What is the distance of the star?
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We can solve the distance r from (4.12):

r=10pc x 10" =M/5 =10 x 10'%5 pc
= 1000 pc = 1 kpc.

Example 4.6 Although the amount of interstel-
lar extinction varies considerably from place to
place, we can use an average value of 2 mag/kpc
near the galactic plane. Find the distance of the
star in Example 4.5, assuming such extinction.
Now the distance must be solved from (4.19):

8 — (—2) =51g — +0.002r,
10
where r is in parsecs. This equation cannot be
solved analytically, but we can always use a nu-
merical method. We try a simple iteration (Ap-
pendix A.7), rewriting the equation as

r= 10 % 102—0.0004}’.

The value r = 1000 pc found previously is a good
initial guess:

ro = 1000,
rL= ]0 e 10270.0004>< 1000 — 398

rp =693,

rip =ri3 =584.

The distance is r &~ 580 pc, which is much less
than our earlier value 1000 pc. This should be
quite obvious, since due to extinction, radiation
is now reduced much faster than in empty space.

Example 4.7 What is the optical thickness of
a layer of fog, if the Sun seen through the fog
seems as bright as a full moon in a cloudless sky?

The apparent magnitudes of the Sun and the
Moon are —26.8 and —12.5, respectively. Thus
the total extinction in the cloud mustbe A = 14.3.
Since

A=(25lge)r,

we get

T=A/(2.51lge)=14.3/1.086=13.2.

The optical thickness of the fog is 13.2. In reality,
a fraction of the light scatters several times, and
a few of the multiply scattered photons leave the
cloud along the line of sight, reducing the total
extinction. Therefore the optical thickness must
be slightly higher than our value.

Example 4.8 (Reduction of Observations) The
altitude and magnitude of a star were measured
several times during a night. The results are given
in the following table.

Altitude Zenith Air Magnitude
distance mass

50° 40° 1.31 0.90

35° 55° 1.74 0.98

25° 65° 2.37 1.07

20° 70° 2.92 1.17

By plotting the observations as in the follow-
ing figure, we can determine the extinction coef-
ficient k and the magnitude mg outside the atmo-
sphere. This can be done graphically (as here) or
using a least-squares fit.

m
0 |—
ml.
1 }— \.\’\.\‘\
> I | I | I | I
0 1 2 3 X

Extrapolation to the air mass X = 0 gives
mo = 0.68. The slope of the line gives k =0.17.

4.7  Exercises

Exercise 4.1 The total magnitude of a triple star
is 0.0. Two of its components have magnitudes
1.0 and 2.0. What is the magnitude of the third
component?

Exercise 4.2 The absolute magnitude of a star
in the Andromeda galaxy (distance 690 kpc) is
M =5. It explodes as a supernova, becoming one
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billion (10°) times brighter. What is its apparent
magnitude?

Exercise 4.3 Assume that all stars have the
same absolute magnitude and stars are evenly
distributed in space. Let N (m) be the number of
stars brighter than m magnitudes. Find the ratio
N@m +1)/N(m).

Exercise 4.4 The V magnitude of a star is 15.1,
B — V = 1.6, and absolute magnitude My = 1.3.
The extinction in the direction of the star in the

visual band is ay = 1 magkpc™!. What is the in-
trinsic colour of the star?

Exercise 4.5 Stars are observed through a triple
window. Each surface reflects away 15 % of the
incident light.

(a) What is the magnitude of Regulus (My =
1.36) seen through the window?
(b) What is the optical thickness of the window?



Radiation Mechanisms

In the previous chapters we have studied the
physical properties and detection of electromag-
netic radiation. Next we shall briefly discuss con-
cepts related to emission and absorption of radi-
ation. Since we can give here only a summary of
some essential results without delving into quan-
tum mechanical explanations, the reader inter-
ested in the details is advised to consult any good
physics textbook.

Radiation of Atoms and
Molecules

5.1

Electromagnetic radiation is emitted or absorbed
when an atom or a molecule moves from one en-
ergy level to another. If the energy of the atom
decreases by an amount AE, the atom emits or
radiates a quantum of electromagnetic radiation,
called a photon, whose frequency v is given by
the equation

AE =hv, (5.1

where h is the Planck constant, h = 6.6256 x
1073* Js. Similarly, if the atom receives or ab-
sorbs a photon of a frequency v, its energy in-
creases by AE = hv.

The classical model describes an atom as
a nucleus surrounded by a swarm of electrons.
The nucleus consists of Z protons, each hav-
ing a charge +e and N electrically neutral neu-
trons; Z is the charge number of the atom and
A =7+ N is its mass number. A neutral atom
has as many electrons (charge —e) as protons.

© Springer-Verlag Berlin Heidelberg 2017

An energy level of an atom usually refers to
an energy level of its electrons. The energy E of
an electron cannot take arbitrary values; only cer-
tain energies are allowed: the energy levels are
quantised. An atom can emit or absorb radiation
only at certain frequencies vif corresponding to
energy differences between some initial and final
states i and f: |E; — Ef| = hvj. This gives rise
to the line spectrum, specific for each element
(Fig. 5.1). Hot gas under low pressure produces
an emission spectrum consisting of such discrete
lines. If the same gas is cooled down and ob-
served against a source of white light (which has
a continuous spectrum), the same lines are seen
as dark absorption lines.

At low temperatures most atoms are in their
lowest energy state, the ground state. Higher en-
ergy levels are excitation states; a transition from
lower to higher state is called excitation. Usually
the excited atom will return to the lower state very
rapidly, radiating a photon (spontaneous emis-
sion); a typical lifetime of an excited state might
be 1078 seconds. The frequency of the emitted
photon is given by (5.1). The atom may return to
the lower state directly or through some interme-
diate states, emitting one photon in each transi-
tion.

Downward transitions can also be induced
by radiation. Suppose our atom has swallowed
a photon and become excited. Another photon,
whose frequency v corresponds to some possi-
ble downward transition from the excited state,
can now irritate the atom, causing it to jump to
a lower state, emitting a photon with the same
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Fig. 5.1 Origin of line spectra. (a) Emission spectrum.
Atoms of glowing gas returning from excited states to
lower states emit photons with frequencies corresponding
to the energy difference of the states. Each element emits
its own characteristic wavelengths, which can be mea-

frequency v. This is called induced or stimulated
emission. Photons emitted spontaneously leave
the atom randomly in all directions with random
phases: the radiation is isotropic and incoherent.
Induced radiation, on the other hand, is coherent;
it propagates in the same direction as and in phase
with the inducing radiation.

Also collisions of atoms cause transitions
up and down. In these transitions photons are
not emitted, instead the kinetic energies of the
atoms are changed. (An upward transition can, of
course, cause e.g. a spontaneous emission.) The
higher the density of the gas the more dominant
the collisional transitions are.

The zero level of the energy states is usually
chosen so that a bound electron has negative en-
ergy and a free electron positive energy (cf. the
energy integral of planetary orbits, Chap. 6). If
an electron with energy E < 0 receives more en-
ergy than |E|, it will leave the atom, which be-
comes an ion. In astrophysics ionisation is often
called a bound-free transition (Fig. 5.2). Unlike

sured by spreading the light into a spectrum with a prism
or diffraction grating. (b) Absorption spectrum. When
white light containing all wavelengths travels through gas,
the wavelengths characteristic of the gas are absorbed

EA 1

0
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states A T ¢
A

Ground
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Fig. 5.2 Different kinds of transitions between energy
levels. Absorption and emission occur between two bound
states, whereas ionisation and recombination occur be-
tween a bound and a free state. Interaction of an atom with
an free electron can result in a free—free transition

in excitation all values of energy (E > 0) are now
possible. The extraneous part of the absorbed en-
ergy goes to the kinetic energy of the liberated
electron. The inverse process, in which an atom
captures a free electron, is the recombination or
free—bound transition.
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Fig. 5.3 Polarisation of light. The light of an incandes-
cent bulb contains all possible directions of vibration and
is therefore unpolarised. Some crystals, for example, pass
electric fields oscillating only in certain directions, and the
transmitted part of the light becomes linearly polarised.
E is the electric field and B the magnetic field

When an electron scatters from a nucleus or an
ion without being captured, the electromagnetic
interaction can change the kinetic energy of the
electron producing free—free radiation. In a very
hot gas (T > 10° K) hydrogen is fully ionised,
and the free—free radiation is the most important
source of emission. It is then usually called ther-
mal bremsstrahlung. The latter part of the name
derives from the fact that decelerating electrons
hitting the anode of an X-ray tube emit similar ra-
diation. In an analogous way the absorption pro-
cess can be called a bound-bound transition.

Electromagnetic radiation is transverse wave
motion; the electric and magnetic fields oscillate
perpendicular to each other and also perpendic-
ular to the direction of propagation. The light of
an ordinary incandescent lamp has a random dis-
tribution of electric fields vibrating in all direc-
tions. If the directions of electric fields in the
plane perpendicular to the direction of propaga-
tion are not evenly distributed, the radiation is
polarised (Fig. 5.3). The direction of polarisation
of linearly polarised light means the plane deter-
mined by the electric vector and the direction of
the light ray. If the electric vector describes a cir-
cle, the radiation is circularly polarised. If the
amplitude of the electric field varies at the same
time, the polarisation is elliptic.

If polarised radiation travels through a mag-
netic field, the direction of the polarisation will
rotate. The amount of such Faraday rotation is
proportional to the component of the magnetic
field parallel to the line of sight, number of elec-
trons along the line of sight, distance travelled,
and square of the wavelength of the radiation.

Scattering is an absorption followed by an
instantaneous emission at the same wavelength

but usually in a new direction. On the macro-
scopic scale, radiation seems to be reflected by
the medium. The light coming from the sky is
sunlight scattered from atmospheric molecules.
Scattered light is always polarised, the degree of
polarisation being highest in the direction perpen-
dicular to the direction of the original radiation.

5.2 The Hydrogen Atom

The hydrogen atom is the simplest atom, consist-
ing of a proton and an electron. According to the
Bohr model the electron orbits the proton in a cir-
cular orbit. (In spite of the fact that this model has
very little to do with reality, it can be successfully
used to predict some properties of the hydrogen
atom.) Bohr’s first postulate says that the angu-
lar momentum of the electron must be a multiple
of h:

mvr =nh, (5.2)

where

m = mass of the electron,
v = speed of the electron,
r =radius of the orbit,
n = the principal quantum number,
n=1,2,3,...,
h=h/2n,

h = the Planck constant.

The quantum mechanical interpretation of
Bohr’s first postulate is obvious: the electron is
represented as a standing wave, and the “length
of the orbit” must be a multiple of the de Broglie
wavelength, A = h/p = h/mv.

A charged particle in a circular orbit (and thus
in accelerated motion) should emit electromag-
netic radiation, losing energy, were it to obey the
rules of classical electrodynamics. Therefore our
electron should spiral down towards the nucleus.
But obviously, Nature does not behave this way,
and we have to accept Bohr’s second postulate,
which says that an electron moving in an allowed
orbit around a nucleus does not radiate. Radia-
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tion is emitted only when the electron jumps from
a higher energy state to a lower one. The emitted
quantum has an energy hv, equal to the energy
difference of these states:
hv=E,, — E,,. (5.3)
We shall now try to find the energy of an electron
in the state E,. Coulomb’s law gives the force
pulling the electron towards the proton:
1 2

¢ (5.4)

dmegr?’
where

€o = the vacuum permittivity
=885x 1072 N"'m~2?,
e = the charge of the electron = 1.6 x 1071 C,

r, = the distance between the electron and the
proton.

The acceleration of a particle moving in a cir-
cular orbit of radius r;, is

and applying Newton’s second law (F = ma), we
get

mv? 1 é?
(5.5

e Amegrl
From (5.2) and (5.5) it follows that

e 1

_ . 4eoh?
" dmeohn’

Fp= ————n°.
me?

The total energy of an electron in the orbit n is
now

E=Ttveltme_ 1€
" T2 Amegry
4
me 1 1
= —=-C—, 5.6
3272e2h2 n? n2 (56)
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where C is a constant. For the ground state (n =
1), we get from (5.6)

Ei=-218x10"8J=—-13.6eV.

From (5.3) and (5.6) we get the energy of the
quantum emitted in the transition E;, — Ej,:

11
hv = E,, — Ep, =c(n—2 - —2). (5.7)

TR

In terms of the wavelength XA this can be ex-
pressed as

1 v C/1 1Y R 1 1
(5.8)

where R is the Rydberg constant, R = 1.097 x
10" m~1.

Equation (5.8) was derived experimentally for
n1 =2 by Johann Jakob Balmer as early as 1885.
That is why we call the set of lines produced by
transitions E, — Ej the Balmer series. These
lines are in the visible part of the spectrum. For
historical reasons the Balmer lines are often de-
noted by symbols He, Hg, H,, etc. If the elec-
tron returns to its ground state (E, — Ep), we
get the Lyman series, which is in the ultravio-
let. The other series with specific names are the
Paschen series (n1 = 3), Bracket series (n; =4)
and Pfund series (n1 = 5) (see Fig. 5.4).

5.3 Line Profiles

The previous discussion suggests that spectral
lines would be infinitely narrow and sharp. In re-
ality, however, they are somewhat broadened. We
will now consider briefly the factors affecting the
shape of a spectral line, called a line profile. An
exact treatment would take us too deep into quan-
tum mechanics, so we cannot go into the details
here.

According to quantum mechanics everything
cannot be measured accurately at the same time.
For example, even in principle, there is no way
to determine the x coordinate and the momen-
tum p, in the direction of the x axis with arbi-
trary precision simultaneously. These quantities

Fig. 5.5 Each spectral line has its characteristic natural
width (solid line). Motions of particles broaden the line
further due to the Doppler effect, resulting in the Voigt
profile (dashed line). Both profiles have the same area

have small uncertainties Ax and Ap,, such that
AxApy = h.

A similar relation holds for other directions, too.
Time and energy are also connected by an uncer-
tainty relation,

AEAt =~ h.

The natural width of spectral lines is a conse-
quence of this Heisenberg uncertainty principle.
If the average lifetime of an excitation state
is T, the energy corresponding to the transi-
tion can only be determined with an accuracy
of AE=h/T =h/Q2nT). From (5.1) it follows
that Av = AE/h. In fact, the uncertainty of the
energy depends on the lifetimes of both the ini-
tial and final states. The natural width of a line is
defined as
AEi+AEr 1 1

p— +_

=— . 5.
h T T (5.9

It can be shown that the corresponding line profile
is
Y Il

= 5.10
T (v =)+ y2/4 (5.10)
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where vy is the frequency at the centre of the line
and [ the total intensity of the line. At the centre
of the line the intensity per frequency unit is

2
IV() = _10»
Ty

and at the frequency v = vy + y /2,

1
[vo+y/2 = E’O = =1

2
Thus the width y is the width of the line profile
at a depth where the intensity is half of the max-
imum. This is called the full width at half maxi-
mum (FWHM).

Doppler Broadening Atoms of a gas are mov-
ing the faster the higher the temperature of the
gas. Thus spectral lines arising from individual
atoms are shifted by the Doppler effect. The ob-
served line consists of a collection of lines with
different Doppler shifts, and the shape of the line
depends on the number of atoms with different
velocities.

Each Doppler shifted line has its character-
istic natural width. The resulting line profile is
obtained by giving each Doppler shifted line
a weight proportional to the number of atoms
given by the velocity distribution and integrat-
ing over all velocities. This gives rise to the Voigt
profile (Fig. 5.5), which already describes most
spectral lines quite well. The shapes of different
profiles don’t seem very different; the most ob-
vious consequence of the broadening is that the
maximum depth decreases.

One way to describe the width of a line is to
give its full width at half maximum (Fig. 5.6).
Due to Doppler broadening this is usually greater
than the natural width. The equivalent width is
another measure of a line strength. It is the area
of a rectangular line that has the same area as
the line profile and that emits no light at all. The
equivalent width can be used to describe the en-
ergy corresponding to a line independently of the
shape of the line profile.

B |

F/2
FWHM y F

N

Ao A

w

Fig. 5.6 The full width at half maximum (FWHM) of
a spectral line is the width at the depth where the inten-
sity is half of the maximum. The equivalent width W is
defined so that the line and the shaded rectangle have the
same area in the picture. The two measures are not gen-
erally the same, although they usually are close to each
other

5.4 Quantum Numbers, Selection

Rules, Population Numbers

Quantum Numbers The Bohr model needs
only one quantum number, n, to describe all the
energy levels of the electron. This can explain
only the coarse features of an atom with a single
electron.

Quantum mechanics describes the electron as
a three dimensional wave, which only gives the
probability of finding the electron in a certain
place. Quantum mechanics has accurately pre-
dicted all the energy levels of hydrogen atoms.
The energy levels of heavier atoms and molecules
can also be computed; however, such calculations
are very complicated. Also the existence of quan-
tum numbers can be understood from the quan-
tum mechanical point of view.

The quantum mechanical description involves
four quantum numbers, one of which is our n, the
principal quantum number. The principal quan-
tum number describes the quantised energy lev-
els of the electron. The classical interpretation of
discrete energy levels allows only certain orbits
given by (5.6). The orbital angular momentum of
the electron is also quantised. This is described by
the angular momentum quantum number . The
angular momentum corresponding to a quantum
number / is

L=I1l+Dh.
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The classical analogy would be to allow some el-
liptic orbits. The quantum number / can take only
the values

[=0,1,....,n—1.

For historical reasons, these are often denoted by
the letters s, p,d, f, g, h, i, j.

Although [ determines the magnitude of the
angular momentum, it does not give its direction.
In a magnetic field this direction is important,
since the orbiting electron also generates a tiny
magnetic field. In any experiment, only one com-
ponent of the angular momentum can be mea-
sured at a time. In a given direction z (e.g. in the
direction of the applied magnetic field), the pro-
jection of the angular momentum can have only
the values

L,=myh,

where m; is the magnetic quantum number
my=0,x1,+2,..., £l

The magnetic quantum number is responsible
for the splitting of spectral lines in strong mag-
netic fields, known as the Zeeman effect. For ex-
ample, if / = 1, m; can have 2/ 4+ 1 = 3 different
values. Thus, the line arising from the transition
I =1 — 1 =0 will split into three components in
a magnetic field (Fig. 5.7).

The fourth quantum number is the spin de-
scribing the intrinsic angular momentum of the
electron. The spin of the electron is

S=+/s(s+ Dh,
1

where the spin quantum number is s = 5. In
a given direction z, the spin is

where m; can have one of the two values:

mg = + E .
All particles have a spin quantum number. Par-
ticles with an integral spin are called bosons (pho-
ton, mesons); particles with a half-integral spin
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Fig. 5.7 The Zeeman effect. In strong magnetic fields
each energy level of a hydrogen atom splits into (2/ 4 1)
separate levels, which correspond to different values of
the magnetic quantum number m; =/,1 —1, ..., —[. The
energy differences of the successive levels have the same
constant value A E. For example the p state (/ = 1) splits
into three and the d state (I = 2) into five sublevels. The
selection rules require that in electric dipole transitions
Am; equals 0 or +1, and only nine different transitions
between p and d states are possible. Moreover, the transi-
tions with the same Am; have the same energy difference.
Thus the spectrum has only three separate lines

are fermions (proton, neutron, electron, neutrino
etc.).

Classically, spin can be interpreted as the ro-
tation of a particle; this analogy, however, should
not be taken too literally.

The total angular momentum J of an electron
is the sum of its orbital and spin angular momen-
tum:

J=L+S.

Depending on the mutual orientation of the vec-
tors L and S the quantum number j of total an-
gular momentum can have one of two possible
values,

1
=14+ <
/ 2
(exceptif I =0, when j = %). The z component
of the total angular momentum can have the val-
ues

mj=0,+1,42,... % j.
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Spin also gives rise to the fine structure of
spectral lines. Lines appear as close pairs or dou-
blets.

Selection Rules The state of an electron can-
not change arbitrarily; transitions are restricted
by selection rules, which follow from certain con-
servation laws. The selection rules express how
the quantum numbers must change in a transi-
tion. Most probable are the electric dipole transi-
tions, which make the atom behave like an oscil-
lating dipole. The conservation laws require that
in a transition we have

Al = =1,
Am; =0, 1.

In terms of the total angular momentum the se-
lection rules are

Al = =1,
Aj=0,=+1,
Amj=0,+1.

The probabilities of all other transitions are
much smaller, and they are called forbidden tran-
sitions; examples are magnetic dipole transitions
and all quadrupole and higher multipole transi-
tions.

Spectral lines originating in forbidden transi-
tions are called forbidden lines. The probability
of such a transition is so low that under normal
circumstances, the transition cannot take place
before collisions force the electron to change
state. Forbidden lines are possible only if the gas
is extremely rarefied (like in auroras and plane-
tary nebulae).

The spins of an electron and nucleus of a hy-
drogen atom can be either parallel or antipar-
allel (Fig. 5.8). The energy of the former state
is 0.0000059 eV higher. But the selection rules
make an electric dipole transition between these
states impossible. The transition, which is a mag-
netic dipole transition, has a very low probabil-
ity, A =2.8 x 10~13 s~!. This means that the av-
erage lifetime of the higher state is 7T = 1/A =
11 x 10° years. Usually collisions change the
state of the electron well before this period of
time has elapsed. But in interstellar space the den-
sity of hydrogen is so low and the total amount of

AE
Spins
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AE=5.87x 106 eV

Proton Electron l=§18.0 >c<m0 ¢

Spins

anti- — En
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Fig.5.8 The origin of the hydrogen 21 cm line. The spins
of the electron and the proton may be either parallel or
opposite. The energy of the former state is slightly larger.
The wavelength of a photon corresponding to a transition
between these states is 21 cm

hydrogen so great that a considerable number of
these transitions can take place.

The wavelength of the radiation emitted by
this transition is 21 cm, which is in the radio band
of the spectrum. Extinction at radio wavelengths
is very small, and we can observe more distant
objects than by using optical wavelengths. The
21 cm radiation has been of crucial importance
for surveys of interstellar hydrogen.

Population Numbers The population num-
ber n; of an energy state i means the number
of atoms in that state per unit volume. In ther-
mal equilibrium, the population numbers obey
the Boltzmann distribution:

Mi _ 8i ~AE/*T)
no 8o

.11

where T is the temperature, k is the Boltzmann
constant, AE = E; — Eg = hv is the energy dif-
ference between the excited and ground state, and
gi 1s the statistical weight of the level i (it is
the number of different states with the same en-
ergy E;). The subscript 0 always refers to the
ground state. Often the population numbers dif-
fer from the values given by (5.11), but still we
can define an excitation temperature Tex in such
a way that (5.11) gives correct population num-
bers, when T is replaced by Texc. The excitation
temperature may be different for different energy
levels.
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Fig.5.9 Spectrum of carbon monoxide CO from 430 nm
to 670 nm. The various bands correspond to different vi-
brational transitions. Each band is composed of numerous
rotational lines. Near the right edge of each band the lines

5.5 Molecular Spectra

The energy levels of an atom are determined by
its electrons. In the case of a molecule, there
are many more possibilities: atoms can vibrate
around their equilibria and the molecule can ro-
tate around some axis. Both vibrational and rota-
tional states are quantised. Transitions between
successive vibrational states typically involve
photons in the infrared band, while transitions be-
tween rotational states involve photons in the mi-
crowave band. These combined with transitions
of electrons produce a band spectrum, character-
istic for molecules (Fig. 5.9). The spectrum has
several narrow bands composed of a great num-
ber of lines.

5.6 Continuous Spectra

We have already mentioned some processes that
produce continuous spectra. Continuous emission
spectra can originate in recombinations and free—
free transitions. In recombination, an atom cap-
tures a free electron whose energy is not quan-
tised; in free—free transitions, both initial and fi-
nal states are unquantised. Thus the emission line
can have any frequency whatsoever. Similarly,
ionisations and free—free transitions can give rise
to a continuous absorption spectrum.

Each spectrum contains a continuous compo-
nent, or continuum, and spectral lines. Some-
times, however, the lines are so closely packed
and so broad that they seem to form a nearly con-
tinuous spectrum.

When the pressure of hot gas is increased, the
spectral lines begin to broaden. At high pressure,
atoms bump into each other more frequently, and
the close neighbours disturb the energy levels.

600 650 [nm]

are so closely packed that they overlap and at this res-
olution, the spectrum looks continuous. (R.W.B. Pearse,
A.G. Gaydon: The Identification of Molecular Spectra
(Chapman & Hall Ltd., London 1976) p. 394)

When the pressure is high enough, the lines be-
gin to overlap. Thus the spectrum of hot gas at
high pressure is continuous. Electric fields also
broaden spectral lines (the Stark effect).

In liquids and solids the atoms are more
densely packed than in gaseous substances. Their
mutual perturbations broaden the energy levels,
producing a continuous spectrum.

5.7 Blackbody Radiation
A blackbody is defined as an object that does
not reflect or scatter radiation shining upon it,
but absorbs and re-emits the radiation completely.
A blackbody is a kind of an ideal radiator, which
cannot exist in the real world. Yet many objects
behave very much as if they were blackbodies.
The radiation of a blackbody depends only on
its temperature, being perfectly independent of
its shape, material and internal constitution. The
wavelength distribution of the radiation follows
Planck’s law, which is a function of temperature
only. The intensity at a frequency v of a black-
body at temperature 7 is

BTy = By = 2] 5.12
v(T) = B(v; )—c—zm, (5.12)

where
h = the Planck constant = 6.63 x 1074 J S,
¢ = the speed of light ~ 3 x 108 ms™!,
k = the Boltzmann constant

=138 x 1078 kL.

By definition of the intensity, the dimension of B,,
is Wm—2Hz ! sterad~!.
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Blackbody radiation can be produced in a
closed cavity whose walls absorb all radiation in-
cident upon them (and coming from inside the
cavity). The walls and the radiation in the cavity
are in equilibrium; both are at the same temper-
ature, and the walls emit all the energy they re-
ceive. Since radiation energy is constantly trans-
formed into thermal energy of the atoms of the
walls and back to radiation, the blackbody radia-
tion is also called thermal radiation.

The spectrum of a blackbody given by Planck’s
law (5.12) is continuous. This is true if the size of
the radiator is very large compared with the dom-
inant wavelengths. In the case of the cavity, this
can be understood by considering the radiation as
standing waves trapped in the cavity. The num-
ber of different wavelengths is larger, the shorter
the wavelengths are compared with the size of
the cavity. We already mentioned that spectra of
solid bodies are continuous; very often such spec-
tra can be quite well approximated by Planck’s
law.

We can also write Planck’s law as a function of
the wavelength. We require that B, dv = — B, dA.
The wavelength decreases with increasing fre-
quency; hence the minus sign. Since v = c/A, we
have

dv c
dv__c 5.13
m 3 (5.13)
whence
dv c
P
or
B(T _2hc2 1
W) = =5 Geeam —1° (5.15)

[By]= Wm2m ! sterad!.

The functions B, and B, are defined in such
a way that the total intensity can be obtained in
the same way using either of them:

o0 o
B(T):/ Bvdv:/ B; dh.
0 0

Let us now try to find the total intensity using
the first of these integrals:

BT — OOBTd_zh © gy
( )_ 0 U( ) v_C_Z 0 ehv/(kT)_l'

We now change the integration variable to x =
hv/(kT), whence dv = (kT /h) dx:

Bry="2" i T4/oo
B C2 h4 0

x3dx
er —1°

The definite integral in this expression is just
a real number, independent of the temperature.
Thus we find that

B(T) = AT*, (5.16)
where the constant A has the value
oo 2 (5.17)
EVERER '

(In order to get the value of A we have to eval-
uate the integral. There is no elementary way to
do that. We can tell those who are familiar with
all the exotic functions so beloved by theoreti-
cal physicists, that the integral can rather easily
be expressed as 1'(4)¢(4), where ¢ is the Rie-
mann zeta function and I is the gamma func-
tion. For integral values, I"(n) is simply the fac-
torial (n — 1)!. The difficult part is showing that
¢(4) = #/90. This can be done by expanding
x* — x? as a Fourier-series and evaluating the se-
riesatx =.)

The flux density F for isotropic radiation of
intensity B is (Sect. 4.1):

F=nB

or

F=oT* (5.18)

This is the Stefan-Boltzmann law, and the con-

stant o (= m A) is the Stefan-Boltzmann constant,
0=567x10Wm2K™*,

From the Stefan-Boltzmann law we get a re-
lation between the luminosity and temperature of
a star. If the radius of the star is R, its surface
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area is 47 RZ, and if the flux density on the sur-
face is F', we have

L =47 R%F.

If the star is assumed to radiate like a blackbody,
we have F = o T*, which gives

L =4no R*T*. (5.19)
In fact this defines the effective temperature of the
star, discussed in more detail in the next section.
The luminosity, radius and temperature of
a star are interdependent quantities, as we can see
from (5.19). They are also related to the absolute
bolometric magnitude of the star. Equation (4.13)
gives the difference of the absolute bolometric
magnitude of the star and the Sun:
L
Mpol — Mpol,0 = —2.51g —. (5.20)
Lo
But we can now use (5.19) to express the lumi-
nosities in terms of the radii and temperatures:

R T
Myol — Mpol,o = —51g — — 101g —. (5.21)
Ro To

As we can see in Fig. 5.10, the wavelength of
the maximum intensity decreases with increas-
ing total intensity (equal to the area below the
curve). We can find the wavelength Any,x corre-
sponding to the maximum intensity by differen-
tiating Planck’s function B, (T') with respect to A
and finding zero of the derivative. The result is
the Wien displacement law:

AmaxT = b = const, (5.22)

where the Wien displacement constant b is
b =0.0028978 Km.

We can use the same procedure to find the
maximum of B,,. But the frequency vpm,x thus ob-
tained is different from vpax = ¢/Amax given by
(5.22). The reason for this is the fact that the
intensities are given per unit frequency or unit
wavelength, and the dependence of frequency on
wavelength is nonlinear.

When the wavelength is near the maximum or
much longer than Ap.x Planck’s function can be

12,000 K

Intensity

9,000 K

6,000 K

T
500 nm 1,000 nm

Fig. 5.10 Intensity distributions of blackbodies at tem-
perature 12,000 K, 9000 K and 6000 K. Since the ratios
of the temperatures are 4:3:2, the wavelengths of inten-
sity maxima given by the Wien displacement law are in
the proportions 1:4, 1:3 and 1:2, or 3, 4 and 6. The ac-
tual wavelengths of the maxima are 241.5 nm, 322 nm and
483 nm. The total intensities or the areas below the curves
are proportional to 4%, 3* and 2*

approximated by simpler expressions. When A &
Amax (or he/(AkT) > 1), we have

ehe/GhT) 5 1

In this case we get the Wien approximation

2he? .
Bu(T) ~ S5—e /04T,

(5.23)
When he/(MkT) < 1 (A > Amax), We have
"/ |t he/(AKT),

which gives the Rayleigh—Jeans approximation

2hc? AT 2ckT

BO~=55. =7

(5.24)

This is particularly useful in radio astronomy.

Classical physics predicted only the Rayleigh—
Jeans approximation. Were (5.24) true for all
wavelengths, the intensity would grow beyond
all limits when the wavelength approaches zero,
contrary to observations. This contradiction was
known as the ultraviolet catastrophe.



114

5 Radiation Mechanisms

5.8 Temperatures

Temperatures of astronomical objects range from
almost absolute zero to millions of degrees. Tem-
perature can be defined in a variety of ways, and
its numerical value depends on the specific def-
inition used. All these different temperatures are
needed to describe different physical phenomena,
and often there is no unique ‘true’ temperature.

Often the temperature is determined by com-
paring the object, a star for instance, with a black-
body. Although real stars do not radiate exactly
like blackbodies, their spectra can usually be ap-
proximated by blackbody spectra after the effect
of spectral lines has been eliminated. The result-
ing temperature depends on the exact criterion
used to fit Planck’s function to observations.

The most important quantity describing the
surface temperature of a star is the effective tem-
perature Tg. It is defined as the temperature of
a blackbody which radiates with the same total
flux density as the star. Since the effective temper-
ature depends only on the total radiation power
integrated over all frequencies, it is well defined
for all energy distributions even if they deviate far
from Planck’s law.

In the previous section we derived the Stefan-
Boltzmann law, which gives the total flux den-
sity as a function of the temperature. If we now
find a value T, of the temperature such that the
Stefan-Boltzmann law gives the correct flux den-
sity F' on the surface of the star, we have found
the effective temperature. The flux density on the
surface is

F=0oT} (5.25)

The total flux is L = 47 R?F, where R is the ra-
dius of the star, and the flux density at a distance r
is

L R a\?

F' = i= k= <5> oT?,  (5.26)
where @ = 2R/r is the observed angular diame-
ter of the star. For direct determination of the ef-
fective temperature, we have to measure the total
flux density and the angular diameter of the star.
This is possible only in the few cases in which the
diameter has been found by interferometry.

If we assume that at some wavelength A the
flux density F; on the surface of the star is ob-
tained from Planck’s law, we get the brightness
temperature Ty, In the isotropic case we have then
F, = n B, (T). If the radius of the star is R and
distance from the Earth r, the observed flux den-
sity is

F,=—F,.
A 2 A

Again F) can be determined only if the angu-
lar diameter « is known. The brightness tempera-
ture T3 can then be solved from

a 2
F| = <§) 7By (T}).

Since the star does not radiate like a blackbody,
its brightness temperature depends on the partic-
ular wavelength used in (5.27).

In radio astronomy, brightness temperature is
used to express the intensity (or surface bright-
ness) of the source. If the intensity at frequency v
is 1, the brightness temperature is obtained from

(5.27)

I, = B, (Ty).

Ty, gives the temperature of a blackbody with the
same surface brightness as the observed source.

Since radio wavelengths are very long, the
condition hv < kT of the Rayleigh-Jeans ap-
proximation is usually satisfied (except for mil-
limetre and submillimetre bands), and we can
write Planck’s law as

BTy = 2]
2 ohv/(Ty) _ |
2hv3 1
T2 T4k 4+ —1
2kv?
~ Tt .

Thus we get the following expression for the ra-
dio astronomical brightness temperature:

c? 22

= sl =57 (5.28)

Ty ﬂ v

A measure of the signal registered by a radio
telescope is the antenna temperature Tp. After
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Blackbody radiation

Observed flux

A An A

Fig. 5.11 Determination of the colour temperature. The
ratio of the flux densities at wavelengths A; and A, gives
the temperature of a blackbody with the same ratio. In gen-
eral the result depends on the wavelengths chosen

the antenna temperature is measured, we get the
brightness temperature from

Ta =nTy, (5.29)
where n is the beam efficiency of the antenna
(typically 0.4 < n < 0.8). Equation (5.29) holds
if the source is wide enough to cover the whole
beam, i.e. the solid angle £25 from which the an-
tenna receives radiation. If the solid angle sub-
tended by the source, §2s, is smaller than £24, the
observed antenna temperature is

Th = n&Tb (25 < £24). (5.30)
£2a

The colour temperature T, can be determined
even if the angular diameter of the source is un-
known (Fig. 5.11). We only have to know the
relative energy distribution in some wavelength
range [A1, A2]; the absolute value of the flux is not
needed. The observed flux density as a function
of wavelength is compared with Planck’s func-
tion at different temperatures. The temperature
giving the best fit is the colour temperature in the
interval [A1, A2]. The colour temperature is usu-
ally different for different wavelength intervals,
since the shape of the observed energy distribu-
tion may be quite different from the blackbody
spectrum.

A simple method for finding a colour tem-
perature is the following. We measure the flux
density Fx/ at two wavelengths A; and Ap. If
we assume that the intensity distribution follows
Planck’s law, the ratio of these flux densities must

be the same as the ratio obtained from Planck’s
law:
F, (T) B (T) A3 ehe/02kD)

o =<5 (5.3l
F}iz(T) B, (T) )»? ehe/(akT) _ | ( )

The temperature T solved from this equation is
a colour temperature.

The observed flux densities correspond to cer-
tain magnitudes m;, and m;,. The definition of
magnitudes gives

/
—m;, =—2.5Ig # + const,
A2

m;\l

where the constant term is a consequence of the
different zero points of the magnitude scales. If
the temperature is not too high, we can use the
Wien approximation in the optical part of the
spectrum:

B;,
my, —my, =—2.51g B, + const
2

Ao >
=-251gl =
g<?»1>

+25 (L1 e 4 const
OD— | — — — (& const.
kT \ A1 A2 &

This can be written as

my, —my, =a+b/T, (5.32)
where a and b are constants. This shows that
there is a simple relationship between the differ-
ence of two magnitudes and the colour tempera-
ture.

Strictly speaking, the magnitudes in (5.32) are
monochromatic, but the same relation can be also
used with broadband magnitudes like B and V. In
that case, the two wavelengths are essentially the
effective wavelengths of the B and V bands. The
constant is chosen so that B — V = 0 for stars
of the spectral type A0 (see Chap. 9). Thus the
colour index B — V also gives a colour tempera-
ture.

The kinetic temperature Ty, is related to the
average speed of gas molecules. The kinetic en-
ergy of an ideal gas molecule as a function of
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temperature follows from the kinetic gas theory:
. . 1 2 3
Kinetic energy = Emv = Eka'

Solving for Ty we get

mv2

Ik = T (5.33)
where m is the mass of the molecule, v its average
velocity (or rather its r.m.s velocity, which means
that v? is the average of the squared velocities),
and k, the Boltzmann constant. For ideal gases
the pressure is directly proportional to the kinetic

temperature (cf. Box 11.1):

P =nkTy, (5.34)

where n is the number density of the molecules
(molecules per unit volume). We previously de-
fined the excitation temperature Texc as a tem-
perature which, if substituted into the Boltzmann
distribution (5.11), gives the observed population
numbers. If the distribution of atoms in different
levels is a result of mutual collisions of the atoms
only, the excitation temperature equals the kinetic
temperature, Texc = Tk.

The ionisation temperature T; is found by
comparing the number of atoms in different states
of ionisation. Since stars are not exactly black-
bodies, the values of excitation and ionisation
temperatures usually vary, depending on the el-
ement whose spectral lines were used for temper-
ature determination.

In thermodynamic equilibrium all these vari-
ous temperatures are equal.

5.9 Other Radiation Mechanisms

The radiation of a gas in thermodynamic equi-
librium depends on the temperature and den-
sity only. In astrophysical objects deviations from
thermodynamic equilibrium are, however, quite
common. Some examples of non-thermal radia-
tion arising under such conditions are mentioned
in the following.

Maser and Laser (See Fig. 5.12.) The Boltz-
mann distribution (5.11) shows that usually there

Excitation state

UOISSTUO
snoauejuodg

A Metastable
state

UOISSTUS

Ground state

Fig. 5.12 The operational principle of the maser and the
laser. A metastable state (a state with a relatively long av-
erage lifetime) stores atoms where they accumulate; there
are more atoms in the metastable state than in the ground
state. This population inversion is maintained by radia-
tively exciting atoms to a higher excitation state (“pump-
ing”), from which they spontaneously jump down to the
metastable state. When the atoms are illuminated by pho-
tons with energies equal to the excitation energy of the
metastable state, the photons will induce more radiation
of the same wavelength, and the radiation is amplified in
geometric progression

are fewer atoms in excited states than in the
ground state. There are, however, means to pro-
duce a population inversion, an excited state con-
taining more atoms than the ground state. This
inversion is essential for both the maser and the
laser (Microwave/Light Amplification by Stimu-
lated Emission of Radiation). If the excited atoms
are now illuminated with photons having ener-
gies equal to the excitation energy, the radia-
tion will induce downward transitions. The num-
ber of photons emitted greatly exceeds the num-
ber of absorbed photons, and radiation is ampli-
fied. Typically the excited state is a metastable
state, a state with a very long average lifetime,
which means that the contribution of spontaneous
emission is negligible. Therefore the resulting
radiation is coherent and monochromatic. Sev-
eral maser sources have been found in interstel-
lar molecular clouds and dust envelopes around
stars.
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Synchrotron Radiation A free charge in ac-
celerated motion will emit electromagnetic radi-
ation. Charged particles moving in a magnetic
field follow helices around the field lines. As seen
from the direction of the field, the motion is circu-
lar and therefore accelerated. The moving charge
will radiate in the direction of its velocity vector.
Such radiation is called synchrotron radiation. It
will be further discussed in Chap. 16.

5.10 Radiative Transfer

Propagation of radiation in a medium, also called
radiative transfer, is one of the basic problems of
astrophysics. The subject is too complicated to
be discussed here in any detail. The fundamental
equation of radiative transfer is, however, easily
derived.

Assume we have a small cylinder, the bottom
of which has an area dA and the length of which
is dr. Let I, be the intensity of radiation perpen-
dicular to the bottom surface going into a solid
angle dw ([I,] = Wm~2Hz ! sterad™!). If the
intensity changes by an amount d/, in the dis-
tance dr, the energy changes by

dE =dI, dAdvdwdt

in the cylinder in time df. This equals the emis-
sion minus absorption in the cylinder. The ab-
sorbed energy is (cf. (4.14))

dEbs = a1, dr dA dv dwdt, (5.35)

where «,, is the opacity of the medium at fre-
quency v. Let the amount of energy emitted per
hertz at frequency v into unit solid angle from
unit volume and per unit time be j, ([j,] =
Wm—3Hz ! sterad™!). This is called the emis-
sion coefficient of the medium. The energy emit-
ted into solid angle dw from the cylinder is then

dEem = jydrdAdvdedr. (5.36)
The equation
dE = —dEups +dEem

gives then

dl, = —a,l,dr + j,dr

or
drl,

o, dr

-+ (5.37)
oy

We shall denote the ratio of the emission coeffi-

cient j, to the absorption coefficient or opacity o,

by S,:

_

Sy, =—. (5.38)
ay

S, 1is called the source function. Because o, dr =
dr,, where t, is the optical thickness at fre-
quency v, (5.37) can be written as

dr,

— = I, +S,.

5.39
an, (5.39)

Equation (5.39) is the basic equation of radia-
tive transfer. Without solving the equation, we see
that if 7, < §,, then d/, /dt, > 0, and the inten-
sity tends to increase in the direction of propa-
gation. And, if [, > S, then dI,/dr, < 0, and
I, will decrease. In an equilibrium the emitted
and absorbed energies are equal, in which case
we find from (5.35) and (5.36)

I, = jy/a, =S,. (5.40)
Substituting this into (5.39), we see that d/, /dz,
= 0. In thermodynamic equilibrium the radiation
of the medium is blackbody radiation, and the
source function is given by Planck’s law:

2hv3 1
Sy =B,(T) = 2 g 1
Even if the system is not in thermodynamic equi-
librium, it may be possible to find an excitation
temperature Texe such that By (Texc) = Sy. This
temperature may depend on frequency.
A formal solution of (5.39) is

1(0) = L) e ™ + / "m0 (1) dr.

T,
0
(541)
Here 7, (0) is the intensity of the background radi-
ation, coming through the medium (e.g. an inter-
stellar cloud) and decaying exponentially in the
medium. The second term gives the emission in
the medium. The solution is only formal, since in
general, the source function S, is unknown and
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must be solved simultaneously with the intensity.
If S, (z,) is constant in the cloud and the back-
ground radiation is ignored, we get

Ty
I,(1) = SU/ e dr=8,(1—e™).
0
(5.42)
If the cloud is optically thick (7, > 1), we have

I,=3S5,, (5.43)

i.e. the intensity equals the source function, and
the emission and absorption processes are in
equilibrium.

An important field of application of the theory
of radiative transfer is in the study of planetary
and stellar atmospheres. In this case, to a good
approximation, the properties of the medium only
vary in one direction, say along the z axis. The
intensity will then depend only on z and 6, where
0 is the angle between the z axis and the direction
of propagation of the radiation.

In applications to atmospheres it is customary
to define the optical depth t, in the vertical direc-
tion as

dry = —a, dz.

Conventionally z increases upwards and the opti-
cal depth inwards in the atmosphere. The vertical
line element dz is related to that along the light
ray, dr, according to

dz =drcosé.

With these notational conventions, (5.39) now
yields

dlv(Z,g) _

Ty

0s6 I, —S,. (5.44)
This is the form of the equation of radiative trans-
fer usually encountered in the study of stellar and
planetary atmospheres.

A formal expression for the intensity emerging
from an atmosphere can be obtained by integrat-
ing (5.44) from t, = co (we assume that the bot-
tom of the atmosphere is at infinite optical depth)
to 7, = 0 (corresponding to the top of the atmo-
sphere). This yields

o
1,(0,0) = / Sye % gechdr,. (5.45)
0

This expression will be used later in Chap. 8 on
the interpretation of stellar spectra.

5.11 Examples

Example 5.1 Find the wavelength of the photon
emitted in the transition of a hydrogen atom from
ny =110 to ny = 109.

Equation (5.8) gives

1_R<1 1)
oo \nfon3
7 1 1 1
=1.097x 10" m™ ' — — —
1092 1102
=16.71m™!,

whence
A =0.060 m.

This is in the radio band. Such radiation was ob-
served for the first time in 1965 by an NRAO ra-
dio telescope.

Example 5.2 The effective temperature of a star
is 12,000 K and the absolute bolometric magni-
tude 0.0. Find the radius of the star, when the ef-
fective temperature of the Sun is 5000 K and the
absolute bolometric magnitude 4.7.

We can apply (5.21):
M, M, =-51 R 101 d
bol bol.© = g Ro g o
2
= iz Teo 10~9-2(Mbo1—Mhoi.0)
Ro T
2
— 5800 10-0-20.0-4.7)
12,000
=2.0.

Thus the radius is twice the Solar radius.

Example 5.3 Derive the Wien displacement
laws.

Let us denote x = hc/(AkT). Planck’s law
then becomes

23T X

B = h*c3 er —1°
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For a given temperature, the first factor is con-
stant. Thus, it is sufficient to find the maximum
of the function f(x) =x3/(e* — 1).

First we must evaluate the derivative of f:

_ Sxter — 1) —x%et

f'x) =

(& — 172
xte y
= m (5 — 5Se — )C).

By definition, x is always strictly positive.
Hence f/(x) can be zero only if the factor 5 —
5e™ — x is zero. This equation cannot be solved
analytically. Instead we write the equation as x =
5 — 5e™ and solve it by iteration:

xo =35 (thisis just a guess),

X1 =5—5e" =4.96631,

x5 =4.96511.

Thus the result is x =4.965. The Wien displace-
ment law is then

hC _3
AmaxTz—k=b=2.898x 107 Km.
X

In terms of frequency Planck’s law is

2hv3 1
2 eh/(T) _ 1"

B,(T) =

Substituting x = hv/(kT) we get

26373 X3

B ="ma a1

Now we study the function f(x) = x3/(e* — 1):

_ 3x%(ef — 1) —x¥e”

£ =2
x%e* y
= m (3 —3e — .X).

This vanishes, when 3 — 3e™ — x = 0. The solu-
tion of this equation is x = 2.821. Hence

T h
Ly =5100x 103 Km

Vmax kX

or

=1.701 x 107" K.

Vmax

Note that the wavelength corresponding to vpax
is different from Ap.x. The reason is that we have
used two different forms of Planck’s function,
one giving the intensity per unit wavelength, the
other per unit frequency.

Example 5.4 (a) Find the fraction of radiation
that a blackbody emits in the range [A1, Az],
where A1 and A2 > Amax. (b) How much energy
does a 100 W incandescent light bulb radiate in
the radio wavelengths, A > 1 cm? Assume the
temperature is 2500 K.

Since the wavelengths are much longer than
Amax We can use the Rayleigh—Jeans approxima-
tion By (T) ~ 2ckT /7*. Then

* *2 dj
B =/ B;L(T)d)LRZCkT/ vy
Al Al A

2¢kT (1 1
BE <x_% ) 7%)
and hence
2 s (L)

Now the temperature is 7 = 2500 K and the
wavelength range [0.01 m, c0), and so

1
25003 0.013

B' =100 W x 1.529 x 10~/
=98x 1070w,

It is quite difficult to listen to the radio emission
of a light bulb with an ordinary radio receiver.

Example 5.5 (Determination of Effective Tem-
perature) The observed flux density of Arcturus
is

F'=45x 1078 Wm™2.

Interferometric measurements give an angular di-
ameter of & = 0.020”. Thus, a/2 = 4.85 x 1078
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radians. From (5.26) we get

45x1078 1/4
T = K
(4.85 x 10-8)2 x 5.669 x 10-8

=4300 K.

Example 5.6 Flux densities at the wavelengths
440 nm and 550 nm are 1.30 and 1.00 W m 2 m,
respectively. Find the colour temperature.

If the flux densities at the wavelengths A; and
Az are F1 and F, respectively, the colour temper-
ature can be solved from the equation

Fi By (To) () /1o
F B B)uz(Tc) N M ehe/kTe) _1°

If we denote

Fi (A >
A=—|—1,
>\ Ay
hc
1=
Mk
B _ he
2=

we get the equation

Ao eB2/Te _q
- eBl/Tc _ 1

for the colour temperature 7.. This equation must
be solved numerically.

In our example the constants have the follow-
ing values:

1. 3
A = LO0 (550N 2.348,
1.30 \ 440

By =32,700 K, B> =26,160 K.

By substituting different values for 7;, we find
that 7. = 7545 K satisfies our equation.

5.12 Exercises
Exercise 5.1 Show that in the Wien approxima-
tion the relative error of By is

AB;
B,

— _o—he/GkT).

Exercise 5.2 If the transition of the hydrogen
atom n + 1 — n were to correspond to the wave-
length 21.05 cm, what would the quantum num-
ber n be? The interstellar medium emits strong
radiation at this wavelength. Can this radiation be
due to such transitions?

Exercise 5.3 The space is filled with back-
ground radiation, remnant of the early age of the
universe. Currently the distribution of this radi-
ation is similar to the radiation of a blackbody
at the temperature of 2.7 K. What is Apax corre-
sponding to this radiation? What is its total in-
tensity? Compare the intensity of the background
radiation to the intensity of the Sun at the visual
wavelengths.

Exercise 5.4 The temperature of a red giant is
T = 2500 K and radius 100 times the solar ra-
dius.

(a) Find the total luminosity of the star, and the
luminosity in the visual band 400 nm < A <
700 nm.

(b) Compare the star with a 100 W lamp that ra-
diates 5 % of its energy in the visual band.
What is the distance of the lamp if it looks as
bright as the star?

Exercise 5.5 The effective temperature of Sir-
ius is 10,000 K, apparent visual magnitude —1.5,
distance 2.67 kpc and bolometric correction 0.5.
What is the radius of Sirius?

Exercise 5.6 The observed flux density of the
Sun at A = 300 nm is 0.59 Wm~2nm~!. Find the
brightness temperature of the Sun at this wave-
length.

Exercise 5.7 The colour temperature can be de-
termined from two magnitudes corresponding to
two different wavelengths. Show that

_ 7000K
T (B=V)+047

C

The wavelengths of the B and V bands are
440 nm and 548 nm, respectively, and we assume
that B = V for stars of the spectral class A0, the
colour temperature of which is about 15,000 K.
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Exercise 5.8 The kinetic temperature of the Find the average speed of the electrons in such
plasma in the solar corona can reach 10° K. a plasma.



Celestial Mechanics

Celestial mechanics, the study of motions of ce-
lestial bodies, together with spherical astronomy,
was the main branch of astronomy until the end
of the 19th century, when astrophysics began
to evolve rapidly. The primary task of classical
celestial mechanics was to explain and predict
the motions of planets and their satellites. Sev-
eral empirical models, like epicycles and Kepler’s
laws, were employed to describe these motions.
But none of these models explained why the plan-
ets moved the way they did. It was only in the
1680’s that a simple explanation was found for all
these motions—Newton’s law of universal gravi-
tation. In this chapter, we will derive some prop-
erties of orbital motion. The physics we need for
this is simple indeed, just Newton’s laws. (For
areview, see Box 6.1.)

This chapter is mathematically slightly more
involved than the rest of the book. We shall use
some vector calculus to derive our results, which,
however, can be easily understood with very el-
ementary mathematics. A summary of the basic
facts of vector calculus is given in Appendix A.4.

6.1 Equations of Motion
We shall concentrate on systems of only two bod-
ies. In fact, this is the most complicated case that
allows a neat analytical solution. For simplicity,
let us call the bodies the Sun and a planet, al-
though they could quite as well be a planet and
its moon, or the two components of a binary star.
Let the masses of the two bodies be m | and m»
and the radius vectors in some fixed inertial coor-

© Springer-Verlag Berlin Heidelberg 2017

o

Fig. 6.1 The radius vectors of the Sun and a planet in an
arbitrary inertial frame are r{ and rp, and r =ry — r; is
the position of the planet relative to the Sun

dinate frame r| and r; (Fig. 6.1). The position
of the planet relative to the Sun is denoted by
r =ry —rj. According to Newton’s law of gravi-
tation the planet feels a gravitational pull propor-
tional to the masses m and m, and inversely pro-
portional to the square of the distance r. Since the
force is directed towards the Sun, it can be ex-
pressed as

Gmimy —r

F= =—Gmimy—, (6.1
3

r2or
where G is the gravitational constant. (More
about this in Sect. 6.5.)

Newton’s second law tells us that the accelera-
tion 7 of the planet is proportional to the applied
force:

F = my¥;. (6.2)
Combining (6.1) and (6.2), we get the equation of
motion of the planet

mzi"z = —Gm1m2 d (6.3)

r3’
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6 Celestial Mechanics

Since the Sun feels the same gravitational pull,
but in the opposite direction, we can immediately
write the equation of motion of the Sun:

miF1 = +Gmimy — (6.4)

r3

We are mainly interested in the relative mo-

tion of the planet with respect to the Sun. To find

the equation of the relative orbit, we cancel the

masses appearing on both sides of (6.3) and (6.4),
and subtract (6.4) from (6.3) to get

. r
F=—n, (65)
r
where we have denoted
u=G(my +my). (6.6)

The solution of (6.5) now gives the relative or-
bit of the planet. The equation involves the radius
vector and its second time derivative. In princi-
ple, the solution should yield the radius vector as
a function of time, r = r(¢). Unfortunately things
are not this simple in practice; in fact, there is
no way to express the radius vector as a function
of time in a closed form (i.e. as a finite expres-
sion involving familiar elementary functions). Al-
though there are several ways to solve the equa-
tion of motion, we must resort to mathematical
manipulation in one form or another to figure out
the essential properties of the orbit. Next we shall
study one possible method.

6.2  Solution of the Equation of

Motion

The equation of motion (6.5) is a second-order
(i.e. contains second derivatives) vector valued
differential equation. Therefore we need six in-
tegration constants or integrals for the complete
solution. The solution is an infinite family of or-
bits with different sizes, shapes and orientations.
A particular solution (e.g. the orbit of Jupiter) is
selected by fixing the values of the six integrals.
The fate of a planet is unambiguously determined
by its position and velocity at any given moment;
thus we could take the position and velocity vec-
tors at some moment as our integrals. Although

Fig. 6.2 The angular momentum vector k is perpendicu-
lar to the radius and velocity vectors of the planet. Since
k is a constant vector, the motion of the planet is restricted
to the plane perpendicular to k

they do not tell us anything about the geome-
try of the orbit, they can be used as initial val-
ues when integrating the orbit numerically with
a computer. Another set of integrals, the orbital
elements, contains geometric quantities describ-
ing the orbit in a very clear and concrete way. We
shall return to these later. A third possible set in-
volves certain physical quantities, which we shall
derive next.

We begin by showing that the angular momen-
tum remains constant. The angular momentum of
the planet in the heliocentric frame is

L=mpr xr. 6.7)
Celestial mechanicians usually prefer to use the
angular momentum divided by the planet’s mass

k=rxr. (6.8)

Let us find the time derivative of this:

k=r xr¥+rxr.

The latter term vanishes as a vector product of
two parallel vectors. The former term contains 7,
which is given by the equation of motion:

k=rx (—pr/r’)=—(u/r’)r xr=0.

Thus k is a constant vector independent of time
(as is L, of course).

Since the angular momentum vector is always
perpendicular to the motion (this follows from
(6.8)), the motion is at all times restricted to the
invariable plane perpendicular to k (Fig. 6.2).
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Fig. 6.3 The radial velocity 7 is the projection of the ve-
locity vector F in the direction of the radius vector r

To find another constant vector, we compute
the vector product k x ¥:

kxi=@xF)x (—ur/r3)

= —%[(r r)F —(r-Pr].

The time derivative of the distance r is equal to
the projection of 7 in the direction of r (Fig. 6.3);
thus, using the properties of the scalar product,
we get 7 =r - I /r, which gives

r-r=rr. (6.9)

Hence,
.. . .oy d
kxr= —,u,(r/r —rr/r ) = 5(—ur/r).
The vector product can also be expressed as
d
kxrF=—(kxF),
dz( )

since k is a constant vector. Combining this with
the previous equation, we have

d
—(k xr =0
dt( XF+ur/r)

and

k x 7+ pur/r =const = —ue. (6.10)

Since k is perpendicular to the orbital plane,
k x 7 must lie in that plane. Thus, e is a linear
combination of two vectors in the orbital plane;
so e itself must be in the orbital plane (Fig. 6.4).
Later we shall see that it points to the direction

Fig.6.4 The orbit of an object in the gravitational field of
another object is a conic section: ellipse, parabola or hy-
perbola. Vector e points to the direction of the pericentre,
where the orbiting object is closest to central body. If the
central body is the Sun, this direction is called the perihe-
lion; if some other star, periastron; if the Earth, perigee,
etc. The true anomaly f is measured from the pericentre

where the planet is closest to the Sun in its orbit.
This point is called the perihelion.
One more constant is found by computing 7 - 7:
FoFP=—ur- r/r3 = —;l,r;;/r3

— i/ = S ),
dr

Since we also have

we get

or

—v? — u/r = const = h. (6.11)

2
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Here v is the speed of the planet relative to the
Sun. The constant £ is called the energy integral,
the total energy of the planet is moh. We must not
forget that energy and angular momentum depend
on the coordinate frame used. Here we have used
a heliocentric frame, which in fact is in acceler-
ated motion.

So far, we have found two constant vectors and
one constant scalar. It looks as though we already
have seven integrals, i.e. one too many. But not all
of these constants are independent; specifically,
the following two relations hold:

k-e=0, 6.12)

n?(e? — 1) = 2hk?, (6.13)
where e and k are the lengths of e and k. The
first equation is obvious from the definitions of e
and k. To prove (6.13), we square both sides of
(6.10) to get

Mze2=(kxf).(kxf)+u2¥+2(kxi)-ﬂ—r-
r r

Since k is perpendicular to 7, the length of
k x i is |k||F| = kv and (k x F*) - (k X ) = k*v2.
Thus, we have

2
M2€2=k2U2+,bL2+ —M(k XF-r).
r

The last term contains a scalar triple product,
where we can exchange the dot and cross to get
k - i x r. Next we reverse the order of the two
last factors. Because the vector product is anti-
commutative, we have to change the sign of the
product:

2
/L2(62 —1) =k%? — —M(k-r X F)
r

2
— k22— g2
r

1
- 2k2(§v2 - ﬁ) —2k2h.

r

This completes the proof of (6.13).

The relations (6.12) and (6.13) reduce the
number of independent integrals by two, so we
still need one more. The constants we have de-
scribe the size, shape and orientation of the or-
bit completely, but we do not yet know where the

planet is! To fix its position in the orbit, we have
to determine where the planet is at some given in-
stant of time 7 = ¢, or alternatively, at what time
it is in some given direction. We use the latter
method by specifying the time of perihelion pas-
sage, the time of perihelion t.

6.3  Equation of the Orbit and

Kepler’s First Law

In order to find the geometric shape of the orbit,
we now derive the equation of the orbit. Since e is
a constant vector lying in the orbital plane, we
choose it as the reference direction. We denote the
angle between the radius vector r and e by f. The
angle f is called the true anomaly. (There is noth-
ing false or anomalous in this and other anomalies
we shall meet later. Angles measured from the
perihelion point are called anomalies to distin-
guish them from longitudes measured from some
other reference point, usually the vernal equinox.)
Using the properties of the scalar product we get

r-e=recosf.

But the product r - e can also be evaluated using
the definition of e:

1
r-e=——(r-kxr+4ur-r/r)
"w

1 1
=——(k-7xr+ur) :——(—kz—i—,ur)
w w

k2
=——r
"

Equating the two expressions of r - e we get

k*/u

Fr=———": (6.14)
1+4+ecos f

This is the general equation of a conic section in
polar coordinates (Fig. 6.4; see Appendix A.2 for
a brief summary of conic sections). The magni-
tude of e gives the eccentricity of the conic:

e=0 circle,

0 <e < 1ellipse,
e=1 parabola,
e>1 hyperbola.
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a) i c)

b) k

Ecliptic

Descending Perihelion

Ascending
node

Fig. 6.5 Six integration constants are needed to describe
a planet’s orbit. These constants can be chosen in vari-
ous ways. (a) If the orbit is to be computed numerically,
the simplest choice is to use the initial values of the ra-
dius and velocity vectors. (b) Another possibility is to use
the angular momentum k, the direction of the perihelion e

Inspecting (6.14), we find that r attains its mini-
mum when f =0, i.e. in the direction of the vec-
tor e. Thus, e indeed points to the direction of the
perihelion.

Starting with Newton’s laws, we have thus
managed to prove Kepler’s first law:

The orbit of a planet is an ellipse, one focus of
which is in the Sun.

Without any extra effort, we have shown that
also other conic sections, the parabola and hyper-
bola, are possible orbits.

6.4 Orbital Elements

We have derived a set of integrals convenient for
studying the dynamics of orbital motion. We now
turn to another collection of constants more ap-
propriate for describing the geometry of the orbit.
The following six quantities are called the orbital
elements (Fig. 6.5):

— semimajor axis a,

— eccentricity e,

— inclination i (or ¢),

— longitude of the ascending node £2,
— argument of the perihelion w,

— time of the perihelion t.

The eccentricity is obtained readily as the
length of the vector e. From the equation of the

(the length of which gives the eccentricity), and the peri-
helion time 7. (c¢) The third method best describes the ge-
ometry of the orbit. The constants are the longitude of the
ascending node 2, the argument of perihelion w, the in-
clination i, the semimajor axis a, the eccentricity e and
the time of perihelion ©

orbit (6.14), we see that the parameter (or semi-
latus rectum) of the orbit is p = k%/u. But the
parameter of a conic section is always a|l — ¢?|,
which gives the semimajor axis, if e and k are
known:
L km

[1—e?|
By applying (6.13), we get an important relation
between the size of the orbit and the energy inte-
gral h:

(6.15)

—u/2h,
w/2h,

if the orbit is an ellipse,

if the orbit is a hyperbola.
(6.16)
For a bound system (elliptical orbit), the total
energy and the energy integral are negative. For
a hyperbolic orbit & is positive; the kinetic en-
ergy is so high that the particle can escape the sys-
tem (or more correctly, recede without any limit).
The parabola, with 4 = 0, is a limiting case be-
tween elliptical and hyperbolic orbits. In reality
parabolic orbits do not exist, since hardly any
object can have an energy integral exactly zero.
However, if the eccentricity is very close to one
(as with many comets), the orbit is usually con-
sidered parabolic to simplify calculations.
The orientation of the orbit is determined by
the directions of the two vectors k (perpendicular
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to the orbital plane) and e (pointing towards the
perihelion). The three angles i, £2 and w contain
the same information.

The inclination i gives the obliquity of the or-
bital plane relative to some fixed reference plane.
For bodies in the solar system, the reference plane
is usually the ecliptic. For objects moving in the
usual fashion, i.e. counterclockwise, the inclina-
tion is in the interval [0°, 90°]; for retrograde or-
bits (clockwise motion), the inclination is in the
range (90°, 180°]. For example, the inclination of
Halley’s comet is 162°, which means that the mo-
tion is retrograde and the angle between its orbital
plane and the ecliptic is 180° — 162° = 18°.

The longitude of the ascending node, 2, indi-
cates where the object crosses the ecliptic from
south to north. It is measured counterclockwise
from the vernal equinox. The orbital elements i
and £2 together determine the orientation of the
orbital plane, and they correspond to the direction
of k, i.e. the ratios of its components.

The argument of the perihelion w gives the
direction of the perihelion, measured from the
ascending node in the direction of motion. The
same information is contained in the direction
of e. Very often another angle, the longitude of
the perihelion @ (pronounced as pi), is used in-
stead of w. It is defined as

T =02 +o. 6.17)

This is a rather peculiar angle, as it is measured
partly along the ecliptic, partly along the orbital
plane. However, it is often more practical than
the argument of perihelion, since it is well de-
fined even when the inclination is close to zero
in which case the direction of the ascending node
becomes indeterminate.

We have assumed up to this point that each
planet forms a separate two-body system with the
Sun. In reality planets interfere with each other by
disturbing each other’s orbits. Still their motions
do not deviate very far from the shape of conic
sections, and we can use orbital elements to de-
scribe the orbits. But the elements are no longer
constant; they vary slowly with time. Moreover,
their geometric interpretation is no longer quite
as obvious as before. Such elements are osculat-
ing elements that would describe the orbit if all

Fig. 6.6 Unit vectors ¢, and € of the polar coordinate
frame. The directions of these change while the planet
moves along its orbit

perturbations were to suddenly disappear. They
can be used to find the positions and velocities of
the planets exactly as if the elements were con-
stants. The only difference is that we have to use
different elements for each moment of time.
Table C.12 (at the end of the book) gives
the mean orbital elements for the nine planets
for the epoch J2000.0 as well as their first time
derivatives. In addition to these secular varia-
tions the orbital elements suffer from periodic
disturbations, which are not included in the ta-
ble. Thus only approximate positions can be cal-
culated with these elements. Instead of the time

of perihelion the table gives the mean longitude
L=M+w+ $2, (6.18)

which gives directly the mean anomaly M (which
will be defined in Sect. 6.7).

6.5 Kepler’s Second and Third Law

The radius vector of a planet in polar coordinates
is simply

r=ré, (6.19)

where €, is a unit vector parallel with r (Fig. 6.6).
If the planet moves with angular velocity f, the
direction of this unit vector also changes at the
same rate:

¢ = féy, (6.20)
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where é; is a unit vector perpendicular to é,. The
velocity of the planet is found by taking the time
derivative of (6.19):

F =78, +ré, =ré, +rfér. 6.21)
The angular momentum k can now be evaluated
using (6.19) and (6.21):
k=rxi=r’fé,, (6.22)
where ¢, is a unit vector perpendicular to the or-
bital plane. The magnitude of k is
k=r’f. (6.23)
The surface velocity of a planet means the area
swept by the radius vector per unit of time. This
is obviously the time derivative of some area, so
let us call it A. In terms of the distance r and true
anomaly f, the surface velocity is
. I,
A= 57 f- (6.24)
By comparing this with the length of k (6.23), we
find that
.1
A= —k.
2

Since k is constant, so is the surface velocity.
Hence we have Kepler’s second law:

(6.25)

The radius vector of a planet sweeps equal areas in
equal amounts of time.

Since the Sun—planet distance varies, the or-
bital velocity must also vary (Fig. 6.7). From Ke-
pler’s second law it follows that a planet must
move fastest when it is closest to the Sun (near
perihelion). Motion is slowest when the planet is
farthest from the Sun at aphelion.

We can write (6.25) in the form

dA = 1k de,

> (6.26)

and integrate over one complete period:

1 P
/ dA = —k/ dr, (6.27)
orbital ellipse 2 Jo

F

Fig.6.7 The areas of the shaded sectors of the ellipse are
equal. According to Kepler’s second law, it takes equal
times to travel distances AB, CD and EF

where P is the orbital period. Since the area of
the ellipse is

wab=ma*V1 — e2,

where a and b are the semimajor and semiminor
axes and e the eccentricity, we get

1
ra*V1—e2= EkP.

To find the length of k, we substitute the energy
integral 4 as a function of semimajor axis (6.16)
into (6.13) to get

(6.28)

(6.29)

k=\/Gm +ma (1-¢2).  (630)

When this is substituted into (6.29) we have

2
2 4m 3

= a’°. 6.31
Gmy +ma) ©31)

This is the exact form of Kepler’s third law as
derived from Newton’s laws. The original version
was

The ratio of the cubes of the semimajor axes of

the orbits of two planets is equal to the ratio of the
squares of their orbital periods.

In this form the law is not exactly valid, even
for planets of the solar system, since their own
masses influence their periods. The errors due to
ignoring this effect are very small, however.



130

6 Celestial Mechanics

Kepler’s third law becomes remarkably simple
if we express distances in astronomical units (au),
times in sidereal years (the abbreviation is unfor-
tunately a, not to be confused with the semimajor
axis, denoted by a somewhat similar symbol a)
and masses in solar masses (Mg). Then G = 472
and

a’ = (m; +my) P2 (6.32)

The masses of objects orbiting around the Sun
can safely be ignored (except for the largest plan-
ets), and we have the original law P> = a>. This
is very useful for determining distances of var-
ious objects whose periods have been observed.
For absolute distances we have to measure at least
one distance in metres to find the length of one
au. Earlier, triangulation was used to measure the
parallax of the Sun or a minor planet, such as
Eros, that comes very close to the Earth. Nowa-
days, radiotelescopes are used as radar to very
accurately measure, for example, the distance to
Venus. Since changes in the value of one au also
change all other distances, the International As-
tronomical Union decided in 1968 to adopt the
value 1 au = 1.496000 x 10! m. The semimajor
axis of Earth’s orbit is then slightly over one au.
But constants tend to change. And so, after 1984,
the astronomical unit has a new value,

1 au = 1.49597870 x 10'! m.

This corresponds to the radius of an object that
has the same orbital period as the Earth but that
has no mass. Since also the Earth’s mass affects
its period, the actual semimajor axis of the Earth
must be slightly bigger than one au.

Another important application of Kepler’s
third law is the determination of masses. By ob-
serving the period of a natural or artificial satel-
lite, the mass of the central body can be obtained
immediately. The same method is used to deter-
mine masses of binary stars (more about this sub-
ject in Chap. 10).

Although the values of the au and year are ac-
curately known in SI-units, the gravitational con-
stant is known only approximately. Astronomical
observations give the product G(m| + m>), but
there is no way to distinguish between the con-
tributions of the gravitational constant and those

of the masses. The gravitational constant must be
measured in the laboratory; this is very difficult
because of the weakness of gravitation. There-
fore, if a precision higher than 2-3 significant
digits is required, the SI-units cannot be used.
Instead we have to use the solar mass as a unit
of mass (or, for example, the Earth’s mass after
Gmg has been determined from observations of
satellite orbits).

6.6  Systems of Several Bodies

This far we have discussed systems consisting of
only two bodies. In fact it is the most complex
system for which a complete solution is known.
The equations of motion are easily generalised,
though. As in (6.5) we get the equation of motion
for the body k, k=1, ...,n:

i=n

. ri —rg

Fr= E Gmiiy
= lri —ril
i=1,i#k

(6.33)

where m; is the mass of the ith body and r; its
radius vector. On the right hand side of the equa-
tion we now have the total gravitational force
due to all other objects, instead of the force of
just one body. If there are more than two bodies,
these equations cannot be solved analytically in
a closed form (Fig. 6.8). The only integrals that
can be easily derived in the general case are the
total energy, total momentum, and total angular
momentum.

If the radius and velocity vectors of all bodies
are known for a certain instant of time, the posi-
tions at some other time can easily be calculated
numerically from the equations of motion. For
example, the planetary positions needed for as-
tronomical yearbooks are computed by integrat-
ing the equations numerically.

Another method can be applied if the grav-
ity of one body dominates like in the solar sys-
tem. Planetary orbits can then be calculated as
in a two-body system, and the effects of other
planets taken into account as small perturbations.
For these perturbations several series expansions
have been derived.

The restricted three-body problem is an exten-
sively studied special case. It consists of two mas-
sive bodies or primaries, moving on circular or-
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Fig.6.8 When a system consists of more than two bodies,
the equations of motion cannot be solved analytically. In
the solar system the mutual disturbances of the planets are
usually small and can be taken into account as small per-
turbations in the orbital elements. K.F. Sundman designed
a machine to carry out the tedious integration of the pertur-
bation equations. This machine, called the perturbograph,
is one of the earliest analogue computers; unfortunately
it was never built. Shown is a design for one component
that evaluates a certain integral occurring in the equations.
(The picture appeared in K.F. Sundman’s paper in Fest-
skrift tillegnad Anders Donner in 1915)

bits around each other, and a third, massless body,
moving in the same plane with the primaries. This
small object does in no way disturb the motion of
the primaries. Thus the orbits of the massive bod-
ies are as simple as possible, and their positions
are easily computed for all times. The problem is
to find the orbit of the third body. It turns out that
there is no finite expression for this orbit.

The Finnish astronomer Karl Frithiof Sund-
man (1873-1949) managed to show that a solu-
tion exists and derive a series expansion for the
orbit. The series converges so slowly that it has

L4

L3 Ly Ly

Ls

Fig. 6.9 The Lagrangian points of the restricted three-
body problem. The points L, Ly and L3 are on the same
line with the primaries, but the numbering may vary. The
points L4 and L5 form equilateral triangles with the pri-
maries

no practical use, but as a mathematical result it
was remarkable, since many mathematicians had
for a long time tried to attack the problem without
success.

The three-body problem has some interesting
special solutions. It can be shown that in certain
points the third body can remain at rest with re-
spect to the primaries. There are five such points,
known as the Lagrangian points Li,...,Ls
(Fig. 6.9). Three of them are on the straight line
determined by the primaries. These points are un-
stable: if a body in any of these points is dis-
turbed, it will escape. The two other points, on
the other hand, are stable. These points together
with the primaries form equilateral triangles. For
example, some asteroids have been found around
the Lagrangian points L4 and Ls of Jupiter. The
first of them were named after heroes of the Tro-
jan war, and so they are called Trojan asteroids.
They move around the Lagrangian points and
can actually travel quite far from them, but they
cannot escape. Figure 8.38 shows two distinct
condensations around the Lagrangian points of
Jupiter. Later similar Trojan asteroids have been
found also on the orbits of other planets.

6.7 Orbit Determination

Celestial mechanics has two very practical tasks:
to determine orbital elements from observations
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and to predict positions of celestial bodies with
known elements. Planetary orbits are already
known very accurately, but new comets and mi-
nor planets are found frequently, requiring orbit
determination.

The first practical methods for orbit determi-
nation were developed by Johann Karl Friedrich
Gauss (1777-1855) at the beginning of the 19th
century. By that time the first minor planets had
been discovered, and thanks to Gauss’s orbit de-
terminations, they could be found and observed
at any time.

At least three observations are needed for
computing the orbital elements. The directions
are usually measured from pictures taken a few
nights apart. Using these directions, it is possible
to find the corresponding absolute positions (the
rectangular components of the radius vector). To
be able to do this, we need some additional con-
straints on the orbit; we must assume that the ob-
ject moves along a conic section lying in a plane
that passes through the Sun. When the three ra-
dius vectors are known, the ellipse (or some other
conic section) going through these three points
can be determined. In practice, more observations
are used. The elements determined are more ac-
curate if there are more observations and if they
cover the orbit more completely.

Although the calculations for orbit determi-
nation are not too involved mathematically, they
are relatively long and laborious. Several meth-
ods can be found in textbooks of celestial me-
chanics.

6.8 Position in the Orbit

Although we already know everything about the
geometry of the orbit, we still cannot find the
planet at a given time, since we do not know the
radius vector r as a function of time. The variable
in the equation of the orbit is an angle, the true
anomaly f, measured from the perihelion. From
Kepler’s second law it follows that f cannot in-
crease at a constant rate with time. Therefore we
need some preparations before we can find the ra-
dius vector at a given instant.
The radius vector can be expressed as

r=a(cosE —e)i + bsinE], (6.34)

Fig. 6.10 Definition of the eccentric anomaly E. The
planet is at P, and r is its radius vector

where i and f are unit vectors parallel with the
major and minor axes, respectively. The angle £
is the eccentric anomaly; its slightly eccentric
definition is shown in Fig. 6.10. Many formulas
of elliptical motion become very simple if either
time or true anomaly is replaced by the eccentric
anomaly. As an example, we take the square of
(6.34) to find the distance from the Sun:

rP=r-r
=a’(cosE — e)? + b*sin’ E
=a*[(cosE —e)* + (1 —e?)(1 — cos’ E) |
=a’[1 —2ecos E +e* cos” E],
whence

r=a(l—ecoskE). (6.35)

Our next problem is to find how to calculate E
for a given moment of time. According to Ke-
pler’s second law, the surface velocity is constant.
Thus the area of the shaded sector in Fig. 6.10 is

t_
A=mab T,
P

(6.36)

where 1 — 7 is the time elapsed since the peri-
helion, and P is the orbital period. But the area
of a part of an ellipse is obtained by reducing
the area of the corresponding part of the circum-
scribed circle by the axial ratio /a. (As the math-
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ematicians say, an ellipse is an affine transfor-
mation of a circle.) Hence the area of SPX is
(Fig. 6.11)

A = = (area of SP'X)

(area of the sector CP'X

QN Q|

— area of the triangle CP'S)

b /1 1 .
=—|=-a-aFE — —ae-asinE
al\2 2

1
= Eab(E —esinE).
By equating these two expressions for the area A,
we get the famous Kepler’s equation,

E —esine=M, (6.37)

where

M= 6.38
—?(t—f) (6.38)

is the mean anomaly of the planet at time ¢. The
mean anomaly increases at a constant rate with
time. It indicates where the planet would be if it
moved in a circular orbit of radius a. For circular
orbits all three anomalies f, E, and M are always
equal.

If we know the period and the time elapsed
after the perihelion, we can use (6.38) to find the
mean anomaly. Next we must solve for the eccen-
tric anomaly from Kepler’s equation (6.37). Fi-
nally the radius vector is given by (6.35). Since
the components of r expressed in terms of the
true anomaly are r cos f and r sin f, we find

_a(cosE—e) _ cosE —e

cos f =

7 " 1—ecosE’ 639)
. bsin E sin £ '
sin f = =v1—-e2—.
1 —ecosE

These determine the true anomaly, should it be of
interest.

Now we know the position in the orbital plane.
This must usually be transformed to some other
previously selected reference frame. For exam-
ple, we may want to know the ecliptic longitude
and latitude, which can later be used to find the

asin E

Fig.6.11 The area of the shaded sector equals b/a times
the area SP'X. S = the Sun, P = the planet, X = the peri-
helion

right ascension and declination. These transfor-
mations belong to the realm of spherical astron-
omy and are briefly discussed in Examples 6.5—
6.7.

6.9 Escape Velocity

If an object moves fast enough, it can escape from
the gravitational field of the central body (to be
precise: the field extends to infinity, so the object
never really escapes, but is able to recede without
any limit). If the escaping object has the mini-
mum velocity allowing escape, it will have lost
all its velocity at infinity (Fig. 6.12). There its ki-
netic energy is zero, since v = 0, and the potential
energy is also zero, since the distance r is infinite.
At infinite distance the total energy as well as the
energy integral i are zero. The law of conserva-
tion of energy gives, then:

1o n

v-——=0,

5 R (6.40)

where R is the initial distance at which the object
is moving with velocity v. From this we can solve
the escape velocity:

e 2_,u_ 2G(m1 + my)
VRN R '

For example on the surface of the Earth, v, is
about 11 km/s (if mo < mg).

(6.41)
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Fig.6.12 A projectile is
shot horizontally from

a mountain on an
atmosphereless planet. If
the initial velocity is small,
the orbit is an ellipse whose
pericentre is inside the
planet, and the projectile
will hit the surface of the
planet. When the velocity
is increased, the pericentre
moves outside the planet.
When the initial velocity
is v¢, the orbit is circular. If
the velocity is increased
further, the eccentricity of
the orbit grows again and
the pericentre is at the
height of the cannon. The
apocentre moves further
away until the orbit
becomes parabolic when
the initial velocity is ve.
With even higher
velocities, the orbit
becomes hyperbolic

The escape velocity can also be expressed us-
ing the orbital velocity of a circular orbit. The or-
bital period P as a function of the radius R of the
orbit and the orbital velocity v, is

27 R

Uc
Substitution into Kepler’s third law yields

472R? _ 472 R3
v2 G(mi+my)

From this we can solve the velocity v in a circu-
lar orbit of radius R:

[G(my 4+ my)
Ve = —

Comparing this with the expression (6.41) of the
escape velocity, we see that

(6.42)

Ve = V2vc. (6.43)

6.10 Virial Theorem

If a system consists of more than two objects, the
equations of motion cannot in general be solved
analytically (Fig. 6.12). Given some initial val-
ues, the orbits can, of course, be found by numer-
ical integration, but this does not tell us anything
about the general properties of all possible orbits.
The only integration constants available for an ar-
bitrary system are the total momentum, angular
momentum and energy. In addition to these, it is
possible to derive certain statistical results, like
the virial theorem. It concerns time averages only,
but does not say anything about the actual state of
the system at some specified moment.

Suppose we have a system of n point masses
m; with radius vectors r; and velocities 7;. We
define a quantity A (the “virial” of the system) as
follows:

n
A= E mii'i - r;.

i=1

(6.44)



6.11  The Jeans Limit

135

The time derivative of this is

n
A:Z(ml-i'l- CFi 4 miFi ;). (6.45)

i=1

The first term equals twice the kinetic energy
of the ith particle, and the second term contains
a factor m; #; which, according to Newton’s laws,
equals the force applied to the ith particle. Thus
we have

n
A=2T+) F;-ri.

i=1

(6.46)

where T is the total kinetic energy of the system.
If (x) denotes the time average of x in the time
interval [0, 7], we have

. 1 [7 . "
<A)=;f0 Adt=(2T)+<ZF,--r,->.

i=1
(6.47)
If the system remains bounded, i.e. none of the
particles escapes, all r;’s as well as all velocities
will remain bounded. In such a case, A does not
grow without limit, and the integral of the pre-
vious equation remains finite. When the time in-

terval becomes longer (7 — 00), (A) approaches
zero, and we get

(2T)+<ZF,'-r,~>:O.

i=1

(6.48)

This is the general form of the virial theorem. If
the forces are due to mutual gravitation only, they
have the expressions

" r,-—rj
F,-:—Gm,- Z m; 3 s
J=1 i "ij

(6.49)

where r;; = |r; — r |. The latter term in the virial
theorem is now

n
ZF,‘-I‘,‘

i=1

n n
ri—rj

i=1j=1j#i ij

n n
r,-—rj
==G) D mimj=—-(ri=1)),

i=1j=i+1 ij

where the latter form is obtained by rearranging
the double sum, combining the terms

and

i ri—rj
r—S-rjzmim]' 3 -(—rj).

ji Fij

mjm,-

Since (r; —rj;)-(ri —r;) = rizj the sum reduces
to

n n

mim;

-G —=U,

> ¥
i=1j=i+1

where U is the potential energy of the system.

Thus, the virial theorem becomes simply

(6.50)

6.11 The Jeans Limit

We shall later study the birth of stars and galax-
ies. The initial stage is, roughly speaking, a gas
cloud that begins to collapse due to its own gravi-
tation. If the mass of the cloud is high enough, its
potential energy exceeds the kinetic energy and
the cloud collapses. From the virial theorem we
can deduce that the potential energy must be at
least twice the kinetic energy. This provides a cri-
terion for the critical mass necessary for the cloud
of collapse. This criterion was first suggested by
Sir James Jeans in 1902.

The critical mass will obviously depend on the
pressure P and density p. Since gravitation is the
compressing force, the gravitational constant G
will probably also enter our expression. Thus the
critical mass is of the form

M = CP*G’p¢, (6.51)
where C is a dimensionless constant, and the con-
stants a, b and ¢ are determined so that the right-
hand side has the dimension of mass. The dimen-
sion of pressure is kgm~!'s72, of gravitational
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constant kg~™!'m3s™2 and of density kgm™3.

Thus the dimension of the right-hand side is

kg(@—b+0) m(—a+3b=3¢) ((~2a-2b)

Since this must be kilograms ultimately, we get
the following set of equations:

a—b+c=1, —a+3b—3c=0,
—2a—2b=0.
The solution of this is a = 3/2, b = —3/2 and
¢ = —2. Hence the critical mass is
p3/2
My = CGszz. (6.52)

This is called the Jeans mass. In order to deter-
mine the constant C, we naturally must calcu-
late both kinetic and potential energy. Another
method based on the propagation of waves de-
termines the diameter of the cloud, the Jeans
length Xy, by requiring that a disturbance of size
Ay grow unbounded. The value of the constant C
depends on the exact form of the perturbation, but
its typical values are in the range [1/7, 27]. We
can take C =1 as well, in which case (6.52) gives
a correct order of magnitude for the critical mass.
If the mass of a cloud is much higher than Mj, it
will collapse by its own gravitation.

In (6.52) the pressure can be replaced by the
kinetic temperature T of the gas (see Sect. 5.8 for
a definition). According to the kinetic gas theory,
the pressure is

P =nkTi, (6.53)

where n is the number density (particles per unit
volume) and k is Boltzmann’s constant. The num-
ber density is obtained by dividing the density of
the gas p by the average molecular weight w:

n=p/u,
whence
P = pkTi /1.
By substituting this into (6.52) we get
My = C<kﬂ>3/zi. (6.54)
uG VP

Box 6.1 (Newton’s Laws)

1. In the absence of external forces, a particle
will remain at rest or move along a straight
line with constant speed.

2. The rate of change of the momentum of
a particle is equal to the applied force F':

p= < (mv) =F
=—(@mv)=F.
P=a
3. If particle A exerts a force F on another par-
ticle B, B will exert an equal but opposite
force —F on A.

If several forces F, F5, ... are applied on
a particle, the effect is equal to that caused by
one force F which is the vector sum of the in-
dividual forces (F = F{+ Fy +--+).

Law of gravitation: If the masses of particles
A and B are m 4 and m g and their mutual dis-
tance r, the force exerted on A by B is directed
towards B and has the magnitude Gm g mp/ r2,
where G is a constant depending on the units
chosen.

Newton denoted the derivative of a func-
tion f by f and the integral function by f’. The
corresponding notations used by Leibniz were
df/dt and [ f dx. Of Newton’s notations, only
the dot is still used, always signifying the time
derivative: f =d f/dt. For example, the veloc-
ity 7 is the time derivative of r, the acceleration
¥ its second derivative, etc.

6.12 Examples

Example 6.1 Find the orbital elements of Jupiter
on August 23, 1996.

The Julian date is 2,450,319, hence from
(6.17), T = —0.0336. By substituting this into
the expressions of Table C.12, we get

a =5.2033,

e =0.0484,

i =1.3053°,

£2 =100.5448°,
w = 14.7460°,
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L =—67.460° = 292.540°.

From these we can compute the argument of per-
ihelion and mean anomaly:

w=w — 2 =-—85.7988° =274.201°,
M =L — o =—82.2060° =277.794°.

Example 6.2 (Orbital Velocity) (a) Comet Aus-
tin (1982g) moves in a parabolic orbit. Find its
velocity on October 8, 1982, when the distance
from the Sun was 1.10 au.

The energy integral for a parabola is A = 0.
Thus (6.11) gives the velocity v:

2w [2GMg
YTV T r
2x4n? x 1
=, ——— =8.47722 au/a
1.10

_ 8.47722 x 1.496 x 10'!' m

~ 40 km/s.
365.2564 x 24 x 3600 s 0 km/s

(b) The semimajor axis of the minor planet
1982 RA is 1.568 au and the distance from the
Sun on October 8, 1982, was 1.17 au. Find its
velocity.

The energy integral (6.16) is now

h=—u/2a.

Hence

which gives

6.5044 au/a ~ 31 km/s.

Example 6.3 In an otherwise empty universe,
two rocks of 5 kg each orbit each other at a dis-
tance of 1 m. What is the orbital period?

The period is obtained from Kepler’s third
law:

2 4723
G(m1 +my)
421 )
T 667 x10-1(5+5)
=5.9x 10102,

whence

P =243,000s =2.8 d.

Example 6.4 The period of the Martian moon
Phobos is 0.3189 d and the radius of the orbit
9370 km. What is the mass of Mars?

First we change to more appropriate units:

P =0.3189 d =0.0008731 sidereal years,
a=9370 km = 6.2634 x 107> au.

Equation (6.32) gives (it is safe to assume that
MPhobos <K MMars)

MMars = a° / P = 0.000000322 M,
(~0.107 Mg).

Example 6.5 Derive formulas for a planet’s he-
liocentric longitude and latitude, given its orbital
elements and true anomaly.

We apply the sine formula to the spherical tri-
angle of the figure:

sin_ sin(w + f)
sin(7/2)

sini
or
sin = sini sin(w + f).
The sine-cosine formula gives
cos(m/2) sin B
= —cosisin(w + f)cos(A — £2)
+cos(w + f)sin(h — £2),

whence

tan(A — £2) =cosi tan(w + f).
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Example 6.6 Find the radius vector and helio-
centric longitude and latitude of Jupiter on Au-
gust 23, 1996.

The orbital elements were computed in Exam-
ple 6.1:

a =5.2033 au,
e =0.0484,

i =1.3053°,

£2 =100.5448°,
w=1274.2012°,

M =277.7940° = 4.8484 rad.

Since the mean anomaly was obtained directly,
we need not compute the time elapsed since peri-
helion.

Now we have to solve Kepler’s equation. It
cannot be solved analytically, and we are obliged
to take the brute force approach (also called nu-
merical analysis) in the form of iteration. For it-
eration, we write the equation as

E,y1 =M +esinE,,

where E,, is the value found in the nth iteration.
The mean anomaly is a reasonable initial guess,
Ep. (N.B.: Here, all angles must be in radians;
otherwise, nonsense results!) The iteration pro-
ceeds as follows:

Eo=M =4.8484,
Ei =M + esin Eg = 4.8004,
Er) =M + esin E1 = 4.8002,

E3 = M + esin E, = 4.8002,

after which successive approximations no longer
change, which means that the solution, accurate
to four decimal places, is

E =4.8002 =275.0°.
The radius vector is

r:a(cosE—e)f+a\/1—ezsinEf
=0.2045i —5.1772 j

and the distance from the Sun,
r=a(l —ecos E)=5.1813 au.

The signs of the components of the radius vector
show that the planet is in the fourth quadrant. The
true anomaly is

—5.1772
f = arctan =272.3°.

10.2045
Applying the results of the previous example, we
find the latitude and longitude:
sin B =sini sin(w + f)
=sin 1.3°sin(274.2° 4 272.3°)
= —0.0026
= p=-0.15°,
tan(A — £2) = cosi tan(w + f)
=cos1.3°tan(274.2° +272.3°)
=0.1139
= A=£+186.5°
= 100.5° 4 186.5°
=287.0°.
(We must be careful here; the equation for tan(A —

£2) allows two solutions. If necessary, a figure
can be drawn to decide which is the correct one.)

Example 6.7 Find Jupiter’s right ascension and
declination on August 23, 1996.
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In Example 6.6, we found the longitude and
latitude, A = 287.0°, B = —0.15°. The corre-
sponding rectangular (heliocentric) coordinates
are:

x =rcosicosfB =1.5154 au,
y=rsinicosf = —4.9547 au,
z=rsinfB =—0.0133 au.

Jupiter’s ecliptic coordinates must be trans-
formed to equatorial ones by rotating them around
the x-axis by an angle e, the obliquity of the
ecliptic (see Box 2.1):

X;=x=1.5154 au,
Yy = ycose — zsine = —4.5405 au,

Zy=ysine 4+ zcose = —1.9831 au.

To find the direction relative to the Earth, we
have to find where the Earth is. In principle, we
could repeat the previous procedure with the or-
bital elements of the Earth. Or, if we are lazy,
we could pick up the nearest Astronomical Al-
manac, which lists the equatorial coordinates of
the Earth:

Xg =0.8815 au,
Ye = —0.4543 au,
Zg =—0.1970 au.

Then the position relative to the Earth is
Xo= X7 — Xg¢ =0.6339 au,
Yo=Y — Yg = —4.0862 au,
Zo=7Zy— Zg = —1.7861 au.

And finally, the right ascension and declination
are

a = arctan(Yy/ Xo) = 278.82° = 18 h 35 min,
Zy
JX3+ 18

If the values given by the Astronomical Almanac
are rounded to the same accuracy, the same result

8 = arctan = —-23.4°.

is obtained. We should not expect a very precise
position since we have neglected all short-period
perturbations in Jupiter’s orbital elements.

Example 6.8 Which is easier, to send a probe to
the Sun or away from the Solar system?

The orbital velocity of the Earth is about
30 km/s. Thus the escape velocity from the So-
lar system is +/2 x 30 & 42 km/s. A probe that is
sent from the Earth already has a velocity equal
to the orbital velocity of the Earth. Hence an extra
velocity of only 12 km/s is needed. In addition,
the probe has to escape from the Earth, which re-
quires 11 km/s. Thus the total velocity changes
are about 23 km/s.

If the probe has to fall to the Sun it has to get
rid of the orbital velocity of the Earth 30 km/s. In
this case, too, the probe has first to be lifted from
the Earth. Thus the total velocity change needed
is 41 km/s. This is nearly impossible with current
technology. Therefore a probe to be sent to the
Sun is first directed close to some planet, and the
gravitational field of the planet is used to acceler-
ate the probe towards its final destination.

Example 6.9 An interstellar hydrogen cloud
contains 10 atoms per cm>. How big must the
cloud be to collapse due to its own gravitation?
The temperature of the cloud is 100 K.

The mass of one hydrogen atom is 1.67 x
10727 kg, which gives a density

p=np=10" m x 1.67 x 10777 kg
=1.67 x 1072 kg/m’.
The critical mass is
My

B < 1.38 x 1072 J/K x 100K )3/2
~ \1.67 x 10727 kg x 6.67 x 10~ 11 Nm2kg 2
1
X
V1.67 x 10-20 kg/m?

~ 1 x 10** kg ~ 5000 M.

The radius of the cloud is

3 M
R="1 4——%5x1017m%20pc.
\ 47 p
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6.13 Exercises

Exercise 6.1 Find the ratio of the orbital veloci-
ties at aphelion and perihelion v, /vp. What is this
ratio for the Earth?

Exercise 6.2 The perihelion and aphelion of the
orbit of Eros are 1.1084 and 1.8078 astronomical
units from the Sun. What is the velocity of Eros
when its distance from the Sun equals the mean
distance of Mars?

Exercise 6.3 Find the radius of the orbit of
a geostationary satellite; such a satellite remains
always over the same point of the equator of the
Earth. Are there areas on the surface of the Earth
that cannot be seen from any geostationary satel-
lite? If so, what fraction of the total surface area?

Exercise 6.4 From the angular diameter of the
Sun and the length of the year, derive the mean
density of the Sun.

Exercise 6.5 Find the mean, eccentric and true
anomalies of the Earth one quarter of a year after
the perihelion.

Exercise 6.6 The velocity of a comet is 5 m/s,
when it is very far from the Sun. If it moved along
a straight line, it would pass the Sun at a distance
of 1 au. Find the eccentricity, semimajor axis and
perihelion distance of the orbit. What will happen
to the comet?

Exercise 6.7 (a) Find the ecliptic geocentric ra-
dius vector of the Sun on May 1, 1997 (J =
2,450,570).

(b) What are the declination and right ascen-
sion of the Sun then?



The Solar System

The solar system consists of a central star, called
the Sun, planets orbiting the Sun and several
smaller objects. By the solar system we mean
here and in the next chapter the system around
our own Sun. Also other stars have similar sys-
tems. They will be discussed later in Chap. 22.
This chapter deals with general properties of the
solar system. Individual objects will be discussed
in the next chapter.

Research of the solar system has evolved
rapidly since the 1960’s when space probes have
made it possible to study planets from short dis-
tances. Many methods used in geosciences are
nowadays applied also in planetary studies. Lan-
ders have been sent to the Moon, Venus, Mars,
and several smaller bodies.

The most convenient way to describe distances
in the solar system is to use astronomical units
(au), the mean distance of the Sun and Earth. One
auis = 1.49597870 x 10" m (see Sect. 6.5). The
distance to the nearest star, Proxima Centauri is
over 270,000 au.

Actually one au is the semimajor axis of a
massless planet whose orbital period equals that
of the Earth. Since also the mass of the Earth af-
fects its motion, the semimajor axis of the Earth
is slightly larger than one au (6.32). The small
difference is, however, important only in precise
calculations.

7.1 Classification of Objects

In addition to the Sun and Moon five objects mov-
ing relative to the stars were already known in

© Springer-Verlag Berlin Heidelberg 2017

the antiquity: Mercury, Venus, Mars, Jupiter and
Saturn. They were called planets from the Greek
word meaning a wanderer. At that time also the
Sun and Moon were considered planets, and the
names of these seven objects are still reflected in
the names of the days of the week.

After the invention of the telescope three more
planets were found: Uranus, Neptune and Pluto.
When observational instruments and methods
have evolved, more objects orbiting behind Nep-
tune and of the same size as Pluto have been
found. Since there was no unambiguous defini-
tion of a planet, some of these new objects should
have been called planets. Therefore the Interna-
tional Astronomical Union (IAU) in its General
Assembly in 2006 defined three distinct cate-
gories to clarify the situation.

According to the new definition, an object is
a planet if it satisfies the following three condi-
tions:

(1) It orbits the Sun.

(2) It has sufficient mass for its self-gravity
to overcome rigid body forces so that it
assumes a hydrostatic equilibrium (nearly
round) shape.

(3) Its perturbations have cleared away other ob-
jects in the neighbourhood of its orbit.

If a body satisfies the conditions (1) and (2) but
not (3), it is a dwarf planet. Since Pluto does not
fulfil the last requirement its status was reduced
to a dwarf planet.

All other objects orbiting the Sun shall be re-
ferred to collectively as Small Solar System Bod-
ies. These include most of the asteroids, Trans-
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Neptunian Objects, comets, and other small bod-
ies. If the central body is not the Sun the object is
a moon or a satellite independently of its proper-
ties.

A satellite is a body which orbits the primary
body so that the centre of mass (barycentre) is
inside the primary. If this is not the case, then the
system is called a binary system. For example, in
the case of the Earth and Moon the barycentre of
the system is inside the Earth, and the Moon is
Earth’s satellite. In the Pluto-Charon system the
centre of mass is outside Pluto, and therefore they
are called a binary system.

The rules (2) and (3) are somewhat problem-
atic. How can the shape of a very distant object
be established? How wide an area a planet should
clean to be a planet, and how clean that region
should be?

Also the definition of a satellite is slightly
problematic, since the largest planets are sur-
rounded by ring systems consisting of small par-
ticles. What is the distinction between the largest
ring particles and smallest satellites? In practice,
an object could be considered a moon if it has
been observed as a separate body whose orbital
elements have been determined. In any case the
question about the exact number of satellites is
no more meaningful, since more and more will be
found when observations become more accurate.
More interesting questions are e.g. the statistical
properties of the moons.

Other unresolved questions concern the classi-
fication of the minor bodies and exoplanets. Pos-
sibly the definitions need some fine-tuning in the
future.

According the current definition there are now
eight planets in the solar system: Mercury, Venus,
Earth, Mars, Jupiter, Saturn, Uranus, and Nep-
tune. It looks quite improbable that more planets
will be found.

Currently there are five known dwarf planets:
Pluto that was earlier a planet, the first asteroid
Ceres and Haumea, Makemake and Eris found
in 2004-2005 orbiting beyond Pluto. Similar ob-
jects may well be found in the future. The prob-
lem is to check whether these distant bodies sat-
isfy the conditions (2) and (3).

The solar system contains a vast number
of different small bodies. Traditionally, they

have been divided into three categories: aster-
oids, comets and meteoroids. Their differences
and properties are discussed in more detail in
Sects. 8.10-8.14.

The planets from Mercury to Saturn are bright
and well visible with a naked eye. Records of
them are found even in the most ancient writ-
ten documents. Uranus and Neptune can be seen
with a pair of binoculars. In addition to the bright
planets, only the brightest comets are visible with
a naked eye.

Gravitation controls the motion of the solar
system bodies. The planetary orbits around the
Sun (Fig. 7.1) are almost coplanar ellipses which
deviate only slightly from circles. Mercury, the
innermost planet, has the most eccentric orbit.
The orbital planes of asteroids, minor bodies
that circle the Sun mainly between the orbits of
Mars and Jupiter, are often more tilted than the
planes of the planetary orbits. Asteroids and dis-
tant Trans-Neptunian Objects revolve in the same
direction as the major planets; comets, however,
may move in the opposite direction. Cometary or-
bits can be very elongated, even hyperbolic. Most
of the satellites circle their parent planets in the
same direction as the planet moves around the
Sun. Only the motions of the smallest particles,
gas and dust are affected by the solar wind, radi-
ation pressure and magnetic fields.

The planets can be divided into inferior and
superior planets depending on their orbits. Mer-
cury and Venus are inferior planets as seen from
the Earth, and planets from Mars to Neptune are
superior planets.

Depending on their physical properties the
planets can be divided into different groups
(Fig. 7.2). Mercury, Venus, Earth, and Mars are
called rerrestrial (Earth-like) planets; they have
a solid surface, are of almost equal size (diam-
eters from 5000 to 12,000 km), and have quite
a high mean density (4000-5000 kgm™3; the
density of water is 1000 kgm~™3). The plan-
ets from Jupiter to Neptune are called Jovian
(Jupiter-like) or giant planets. The densities of
the giant planets are about 1000-2000 kgm~3,
and most of their volume is liquid. Diameters are
several times greater than those of the terrestrial
planets.
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Fig. 7.1 (a) Planetary orbits from Mercury to Mars. The
dashed line represents the part of the orbit below the eclip-
tic; the arrows show the distances travelled by the planets
during one month (January 2000). (b) Planets from Jupiter

[+

Fig. 7.2 Major planets from Mercury to Neptune. Four
innermost planets are called terrestrial planets and four
outermost ones are giant planets. Three dwarf planets are

7.2  Planetary Configurations

To the naked eye planets look starlike dots. How-
ever, their slow motion with respect to the stars
reveals that they are bodies of our solar system.

Saturn \ :
Jl)plt i l Y
—_—
id belt Aanus //

_ ’

astexoi

Ne| un/e 10 AU
ept

to Neptune and the dwarf planet Pluto. The arrows indi-
cate the distances travelled by the planets during the 10
year interval 2000-2010

“Planets”

L
Planets®

also shown. Relative size of the Sun is shown at left. Plan-
etary distances to the Sun are not in scale. (The Interna-
tional Astronomical Union/Martin Kornmesser)

The apparent motions of the planets look quite
complicated, partly because they reflect the mo-
tion of the Earth around the Sun (Figs. 7.3 and
7.4).
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Fig. 7.3 (a) Apparent motion of Mars during the 2016
opposition. Usually Mars moves in the prograde direction
(counterclockwise with respect to the stars), but over a
month before and after the opposition the motion is retro-

Normally the planets move eastward (direct
motion, counterclockwise as seen from the North-
ern hemisphere) when compared with the stars.
When the Earth passes a superior planet, the mo-
tion of the planet reverses to the opposite or ret-
rograde direction. After a few weeks of retro-
grade motion, the direction is changed again, and
the planet continues in the original direction. It is
quite understandable that the ancient astronomers
had great difficulties in explaining and modelling
such complicated turns and loops. Figure 7.5 ex-
plains some basic planetary configurations.

A superior planet (planet outside the orbit of
the Earth) is said to be in opposition when it is
exactly opposite the Sun, i.e. when the Earth is
between the planet and the Sun. When the planet
is behind the Sun, it is in conjunction. In prac-

grade. (b) Relative positions of the Earth and Mars. The
projection of the Earth—Mars direction on the infinitely
distant celestial sphere results in (a)

tise, the planet may not be exactly opposite or
behind the Sun because the orbits of the planet
and the Earth are not in the same plane. In astro-
nomical almanacs oppositions and conjunctions
are defined in terms of ecliptic longitudes. The
longitudes of a body and the Sun differ by 180° at
the moment of opposition; in conjunction the lon-
gitudes are equal. However, the right ascension is
used if the other body is not the Sun. Those points
where the apparent motion of a planet changes its
direction are called stationary points. Opposition
occurs in the middle of the retrograde loop.
Inferior planets (Mercury and Venus) are never
in opposition. The configuration when the plan-
ets is between the Earth and the Sun is called in-
ferior conjunction. The conjunction correspond-
ing to that of a superior planet is called an upper
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Fig. 7.4 Apparent motions of the Sun, Mercury, Venus
and Mars in 1995 in the geocentric frame as seen from the
North pole of the ecliptic

Conjunction

Upper conjunction

Opposition

Fig. 7.5 Planetary configurations. The angle o (Sun—ob-
ject—Earth) is the phase angle and ¢ (Sun—Earth—object) is
the elongation

conjunction or superior conjunction. The maxi-
mum (eastern or western) elongation, i.e. the an-
gular distance of the planet from the Sun is 28°
for Mercury and 47° for Venus. Elongations are
called eastern or western, depending on which

side of the Sun the planet is seen. The planet is
an “evening star” and sets after the Sun when it is
in eastern elongation; in western elongation the
planet is seen in the morning sky as a “morning
star”.

The synodic period is the time interval be-
tween two successive events (e.g. oppositions).
The period which we used in the previous chap-
ters is the sidereal period, the true time of revolu-
tion around the Sun, unique for each object. The
synodic period depends on the difference of the
sidereal periods of the two bodies.

Let the sidereal periods of two planets be P
and P, (assume that P; < P;). Their mean an-
gular velocities (mean motions) are 2w /Py and
2/ P,. After one synodic period Pj >, the inner
planet has made one full revolution more than
the outer planet. Thus the angles travelled by the
planets are related by

Pl —on i Pyt
— = LTl -,
1,2P1 1,2P2

or
1 1 1

i . (7.1)
P, P P

Since Mercury and Venus move inside the or-
bit of the Earth, they show similar phases as the
Moon. The angle Sun—planet—Earth is called the
phase angle, often denoted by the Greek letter .
The fraction of the planetary surface seen illumi-
nated depends on the phase angle. For Mercury
and Venus the phase angle can have any value be-
tween 0° and 180°. This means that we can see
“full Venus” (when it is behind the Sun), “half
Venus”, and so on.

The phase angle range of the superior planets
is more limited. For Mars the maximum phase
angle is 41°, for Jupiter 11°, and for Neptune
only 2°.

7.3  Orbit of the Earth and Visibility

of the Sun

The rotation of the Earth and its motion around
the Sun have been used as the basis of time reck-
oning since prehistoric times (although their true
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nature was not known then). However, these mo-
tions are not free from perturbations. Although
our modern time system is based on atomic
clocks, the ordinary time we use in our clocks
is adjusted to the rotation of the Earth by leap
seconds (Sect. 2.14).

The sidereal year is the real orbital period
of the Earth around the Sun. After one sidereal
year, the Sun is seen at the same position rela-
tive to the stars. The length of the sidereal year is
365.256363051 days of 86,400 SI seconds at the
epoch J2000.0 = 2000 January 1 12:00:00 TT.

We noted earlier that, owing to precession, the
direction of the vernal equinox moves along the
ecliptic at about 50” per year. This means that the
Sun returns to the vernal equinox before one com-
plete sidereal year has elapsed. This time interval,
called the tropical year, is 365.24218967 days.

A third definition of the year is based on the
perihelion passages of the Earth. Planetary per-
turbations cause a gradual change in the direc-
tion of the Earth’s perihelion. The time inter-
val between two successie perihelion passages is
called the anomalistic year, the length of which
is 365.259635864 days, a little longer than the
sidereal year. It takes about 21,000 years for the
perihelion to revolve 360° relative to the vernal
equinox.

The equator of the Earth is tilted about 23.4°
with respect to the ecliptic. Owing to perturba-
tions, this angle changes with time. If periodic
terms are neglected, the obliquity of the ecliptic ¢
can be calculated as in Box 2.1. The obliquity
varies between 22.1° and 24.5° with a 41,000
year periodicity. At present the tilt is decreasing.
There are also small short term variations, like the
nutation.

The declination of the Sun varies between —¢&
and +¢ during the year. At any given time, the
Sun is seen at zenith from one point on the surface
of the Earth. The latitude of this point is the same
as the declination of the Sun. At the latitudes —e¢
(the Tropic of Capricorn) and +¢ (the Tropic of
Cancer), the Sun is seen at zenith once every
year, and between these latitudes twice a year.
The Sun crosses the equator at vernal and autum-
nal equinox.

In the Northern hemisphere the Sun will not
set if the latitude is greater than 90° — §, where

6 is the declination of the Sun. The southern-
most latitude where the midnight Sun can be seen
is thus 90° — ¢ = 66.6°. This is called the Arc-
tic Circle. (The same holds true in the Southern
hemisphere.) The Arctic Circle is the southern-
most place where the Sun is (in theory) below
the horizon during the whole day at the winter
solstice. The sunless time lasts longer and longer
when one goes north (south in the Southern hemi-
sphere). At the poles, day and night last half
a year each. In practise, refraction and location of
the observing site will have a large influence on
the visibility of the midnight Sun and the number
of sunless days. Because refraction raises objects
seen at the horizon, the midnight Sun can be seen
a little further south than at the Arctic Circle. For
the same reason the Sun can be seen simultane-
ously at both poles around the time of vernal and
autumnal equinox. (See also Sect. 2.6.)

The eccentricity of the Earth’s orbit is about
0.0167. The distance from the Sun varies between
147-152 million km. The flux density of solar ra-
diation varies somewhat at different parts of the
Earth’s orbit, but this has practically no effect on
the seasons. In fact the Earth is at perihelion in the
beginning of January, in the middle of the north-
ern hemisphere’s winter.

The seasons are due to the obliquity of the
ecliptic which affects the energy received from
the Sun depends in three different ways. First the
flux per unit area is proportional to sina, where
a is the altitude of the Sun. In summer the alti-
tude can have greater values than in winter, giv-
ing more energy per unit area. Another effect is
due to the atmosphere: when the Sun is near the
horizon, the radiation must penetrate thick atmo-
spheric layers. This means large extinction and
less radiation at the surface. The third factor is the
length of the time the Sun is above the horizon.
This is important at high latitudes, where the low
altitude of the Sun is compensated by the long
daylight time in summer. This last effect is ne-
glected in many textbooks written by authors not
living this far north. These effects are discussed
in detail in Example 7.2.

There are also long-term variations in the an-
nual Solar flux. Serbian geophysicist Milutin Mi-
lankovi¢ (1879-1958) published in the 1930’s



7.4 The Orbit of the Moon

147

and 1940’s his theory of ice ages. During the last
2-3 million years, large ice ages have recurred
approximately every 100,000 years. He proposed
that variations of the Earth’s orbit cause long-
term periodic climate change, now known as Mi-
lankovi¢ cycles. Milankovi¢ claimed that the cy-
cles in eccentricity, direction of the perihelion,
obliquity, and precession result in 100,000 year
ice age cycle. The cycle of precession is 26,000
years, direction of the perihelion relative to the
equinoxes is 22,000 years, and the obliquity of
the ecliptic has a 41,000 year cycle. Changes
in orbital eccentricity are not fully periodic but
some periods above 100,000 years can be found.
The eccentricity varies between 0.005-0.058 and
is currently 0.0167.

The annual incoming Solar flux varies with
these orbital changes and the effect is largest at
high latitudes. If, for example, the eccentricity is
high, and the Earth is near the aphelion during the
hemisphere’s winter, then winters are long and
cold and summers are short. However, the the-
ory is controversial, orbital forcing on the climate
change is not well understood, and probably not
enough to trigger glaciation. There exist also pos-
itive feedback loops, like the effect of low albedo
of snow and ice. It means that ice reflects more ra-
diation back into space, thus cooling the climate.
The system is highly chaotic so that even minor
changes in the primary conditions will result in
large differences in the outcome. There are also
other effects causing climate change, including
emerging gases from large lava flows and erup-
tions of volcanos and, nowadays, anthropogenic
reasons.

The future is also uncertain. Some theories
predict that the warm period will continue next
50,000 years, whereas others conclude that the
climate is already cooling. Anthropogenic rea-
sons, like ever increasing fraction of green house
gases, e.g. carbon dioxide, will change the short-
term predictions.

7.4 The Orbit of the Moon

The Earth’s satellite, the Moon, circles the Earth
counterclockwise. One revolution, the sidereal

month, takes about 27.322 days. In practise,
a more important period is the synodic month,
the duration of the Lunar phases (e.g. from full
moon to full moon). In the course of one sidereal
month the Earth has travelled almost 1/12 of its
orbit around the Sun. The Moon still has about
1/12 of its orbit to go before the Earth—-Moon—
Sun configuration is again the same. This takes
about 2 days, so the phases of the Moon are re-
peated every 29 days. More exactly, the length of
the synodic month is 29.531 days.

The new moon is that instant when the Moon
is in conjunction with the Sun. Almanacs define
the phases of the Moon in terms of ecliptic lon-
gitudes; the longitudes of the new moon and the
Sun are equal. Usually the new moon is slightly
north or south of the Sun because the lunar orbit
is tilted 5° with respect to the ecliptic.

About 2 days after the new moon, the wax-
ing crescent moon can be seen in the western
evening sky. About 1 week after the new moon,
the first quarter follows, when the longitudes of
the Moon and the Sun differ by 90°. The right half
of the Moon is seen lit (left half when seen from
the Southern hemisphere). The full moon appears
a fortnight after the new moon, and 1 week af-
ter this the last quarter. Finally the waning cres-
cent moon disappears in the glory of the morning
sky.

The orbit of the Moon is approximately ellip-
tic. The length of the semimajor axis is
384,400 km and the eccentricity 0.055. Owing
to perturbations caused mainly by the Sun, the
orbital elements vary with time. The minimum
distance of the Moon from the centre of the
Earth is 356,400 km, and the maximum distance
406,700 km. This range is larger than the one cal-
culated from the semimajor axis and the eccen-
tricity. The apparent angular diameter is in the
range 29.4'-33.5'.

The rotation time of the Moon is equal to the
sidereal month, so the same side of the Moon al-
ways faces the Earth. Such synchronous rotation
is common among the satellites of the solar sys-
tem: almost all large moons rotate synchronously.

The orbital speed of the Moon varies accord-
ing to Kepler’s second law. The rotation period,
however, remains constant. This means that, at
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Fig. 7.6 Librations of the Moon can be seen in this pair of photographs taken when the Moon was close to the perigee
and the apogee, respectively. (Helsinki University Observatory)

different phases of the lunar orbit, we can see
slightly different parts of the surface. When the
Moon is close to its perigee, its speed is greater
than average (and thus greater than the mean ro-
tation rate), and we can see more of the right-hand
edge of the Moon’s limb (as seen from the North-
ern hemisphere). Correspondingly, at the apogee
we see “behind” the left edge. Owing to this /i-
bration, a total of 59 % of the surface area can
be seen from the Earth (Fig. 7.6). The libration is
quite easy to see if one follows some detail at the
edge of the lunar limb.

There are also two other factors causing libra-
tion. When the Moon is rising from the East, we
can see a little behind the right edge, and when
the Moon is setting, behind the left edge. The
third effect is the latitudinal libration. Since the
orbit of the Moon is not quite in the equatorial
plane, we can see behind the northern or southern
pole depending on the position of the Moon.

The orbital plane of the Moon is tilted only
about 5° to the ecliptic. Therefore the Moon is
always close to the ecliptic just like the Sun and

the planets. However, the orbital plane changes
gradually with time, owing mainly to the pertur-
bations caused by the Earth and the Sun. These
perturbations cause the nodal line (the intersec-
tion of the plane of the ecliptic and the orbital
plane of the Moon) to make one full revolu-
tion in 18.6 years. We have already encountered
the same period in the nutation. When the as-
cending node of the lunar orbit is close to the
vernal equinox, the Moon can be 23.4° 4 5° =
28.4° north or south of the equator. When the de-
scending node is close to the vernal equinox, the
zone where the Moon can be found extends only
23.4° — 5° = 18.4° north or south of the equator.

The nodical or draconic month is the time in
which the Moon moves from one ascending node
back to the next one. Because the line of nodes is
rotating, the nodical month is 3 hours shorter than
the sidereal month, i.e. 27.212 days. The orbital
ellipse itself also precesses slowly. The orbital
period from perigee to perigee, the anomalistic
month, is 5.5 h longer than the sidereal month, or
about 27.555 days.
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Gravitational differences caused by the Moon
and the Sun on different parts of the Earth’s sur-
face give rise to the tides. Gravitation is greatest
at the sub-lunar point and smallest at the opposite
side of the Earth. At these points, the surface of
the seas is highest (high tide, flood). About 6 h
after flood, the surface is lowest (low tide, ebb).
The tide generated by the Sun is less than half of
the lunar tide. When the Sun and the Moon are
in the same direction with respect to the Earth
(new moon) or opposite each other (full moon),
the tidal effect reaches its maximum; this is called
spring tide.

The sea level typically varies 1 m, but in some
narrow straits, the difference can be as great as
15 m. Due to the irregular shape of the oceans,
the true pattern of the oceanic tide is very com-
plicated.

The solid surface of the Earth also suffers tidal
effects, but the amplitude is much smaller, about
30 cm.

Tides generate friction, which dissipates the
rotational and orbital kinetic energy of the Earth—
Moon system. This energy loss induces some
changes in the system. First, the rotation of the
Earth slows down until the Earth also rotates syn-
chronously, i.e. the same side of Earth will always
face the Moon. Secondly, the semimajor axis of
the orbit of the Moon increases, and the Moon
drifts away about 3 cm per year.

7.5 Eclipses and Occultations

An eclipse is an event in which a body goes
through the shadow of another body. The most
frequently observed eclipses are the lunar eclipses
and the eclipses of the large satellites of Jupiter.
An occultation takes place when an occulting
body goes in front of another object; typical
examples are stellar occultations caused by the
Moon. Generally, occultations can be seen only
in a narrow strip; an eclipse is visible wherever
the body is above the horizon.

Solar and lunar eclipses are the most spec-
tacular events in the sky. A solar eclipse occurs
when the Moon is between the Earth and the Sun
(Fig. 7.7). (According to the definition, a solar
eclipse is not an eclipse but an occultation!) If the
whole disk of the Sun is behind the Moon, the

a) Total solar eclipse

Penumbra
. — Sun
Moon

b) Annular solar eclipse

O

c) Lunar eclipse

Penumbra

Fig. 7.7 (a) A total solar eclipse can be seen only inside
a narrow strip; outside the zone of totality the eclipse is
partial. (b) An eclipse is annular if the Moon is at apogee
from where the shadow of the Moon does not reach the
Earth. (c) A lunar eclipse is visible everywhere where the
Moon is above the horizon

Fig. 7.8 The total eclipse of the Sun occurred in 1990
over Finland. (Photo Matti Martikainen)

eclipse is total (Fig. 7.8); otherwise, it is partial.
If the Moon is close to its apogee, the apparent
diameter of the Moon is smaller than that of the
Sun, and the eclipse is annular.

If the orbital plane of the Moon coincided with
the plane of the ecliptic, one solar and one lunar
eclipse would occur every synodic month. How-
ever, the plane is tilted about 5°; therefore, at full
moon, the Moon must be close to the nodes for
an eclipse to occur. The angular distance of the
Moon from the node must be smaller than 4.6°
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for a total lunar eclipse, and 10.3° for a total so-
lar eclipse.

Two to seven eclipses occur annually. Usually
eclipses take place in a set of 1-3 eclipses, sepa-
rated by an interval of 173 days. In one set there
can be just one solar eclipse or a succession of
solar, lunar and another solar eclipse. In one year,
eclipses belonging to 2 or 3 such sets can take
place.

The Sun and the (ascending or descending)
node of the lunar orbit are in the same direction
once every 346.62 days. Nineteen such periods
(= 6585.78 days = 18 years 11 days) are very
close to the length of 223 synodic months. This
means that the Sun—Moon configuration and the
eclipses are repeated in the same order after this
period, called for historical reasons the Saros pe-
riod; it was already known to the ancient Babylo-
nians.

A solar eclipse is fotal if the whole solar disk
is hidden behind the Moon. In a partial eclipse
only a part of the Sun is covered. If the Moon is
close to its apogee its apparent diameter is smaller
than the diameter of the Sun, and the eclipse is
annular.

During a solar eclipse the shadow of the Moon
on Earth’s surface is always less than 270 km
wide. The shadow moves at least 34 km/min; thus
the maximum duration of a total eclipse is 7%
minutes. On both sides of the track of the total
eclipse a partial eclipse can be seen.

Also lunar eclipses can be of different kinds.
A lunar eclipse is fotal if the Moon is entirely in-
side the umbral shadow of the Earth; otherwise
the eclipse is partial. If the Moon does not hit
the umbral shadow but receives some sunlight,
the eclipse is difficult to see with the unaided eye
because the lunar magnitude remains almost un-
changed.

A lunar eclipse can be seen on the whole hemi-
sphere where the Moon is above the horizon. The
maximum duration of a lunar eclipse is 3.8 h, and
the duration of the total phase is always shorter
than 1.7 h. During the total phase the Moon is
coloured deep red because some red light is re-
fracted through the Earth’s atmosphere.

The Moon moves eastwards, and stars are oc-
culted by the dark edge of the Moon during
the first quarter. Therefore occultation is easier

Fig.7.9 Transit of Venus was seen in June 6, 2004. Venus
is seen as a small dark disc in front of the Sun. (Photo H.
Karttunen)

to observe, and photometric measurements are
possible Observations of the stellar occultations
caused by the Moon formerly served as an accu-
rate method for determining the lunar orbit. Be-
cause the Moon has no atmosphere, a star disap-
pears abruptly in less than 1/50 s. If a fast pho-
tometer is used for recording the event, the typical
diffraction pattern can be seen. The shape of the
diffraction was used to determine angular diame-
ters of stars ans separations of binary stars. In the
first decades of radio astronomy the occultations
of some radio sources were used for determining
their exact positions.

There are some bright stars and planets inside
the 11° wide zone where the Moon moves, but the
occultation of a bright, naked-eye object is quite
rare.

Occultations are also caused by planets and as-
teroids. Accurate predictions are complicated be-
cause such an event is visible only in a very nar-
row path. The Uranian rings were found during
an occultation in 1977, and the shapes of some as-
teroids have been studied during some favourable
events, timed exactly by several observers located
along the predicted path.

A transit is an event in which Mercury or
Venus moves across the Solar disk as seen from
the Earth (Fig. 7.9). A transit can occur only when
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the planet is close to its orbital node at the time
of inferior conjunction. Transits of Mercury oc-
cur about 13 times per century; transits of Venus
only twice. The next transits of Mercury are:
Nov 11, 2019; Nov 13, 2032 and Nov 7, 2039.
The next transits of Venus are: Dec 11, 2117;
Dec 8, 2125 and Jun 11, 2247. In the 18th cen-
tury the two transits of Venus (1761 and 1769)
were used for determining the value of the astro-
nomical unit.

The Structure and Surfaces of
Planets

7.6

Since the 1960’s a vast amount of data have been
collected using spacecraft, either during a flyby,
orbiting a body, or directly landing on the surface.
This gives a great advantage compared to other
astronomical observations. We may even speak of
revolution: the solar system bodies have turned
from astronomical objects to geophysical ones.
Many methods traditionally used in various sib-
ling branches of geophysics can now be applied
to planetary studies.

The perturbations in the orbit of a satellite or
spacecraft can be used in studying the internal
structure of a planet. Any deviation from spher-
ical symmetry is visible in the external gravita-
tional field. The shape and irregularities of the
gravitation field generated by a planet reflect its
shape, internal structure and mass distribution.
Also the surface gives certain indications on in-
ternal structure and processes.

The IAU planet definition states that planets
are bodies in hydrostatic equilibrium. Gravity of
a body will pull its material inwards, but the body
resist the pull if the strength of the material is
greater than the pressure exerted by the overly-
ing layers. If the diameter is larger than about
800-1000 km, gravity is able to deform rocky
bodies into spherical shape. Smaller bodies than
this have irregular shapes. On the other hand, e.g.
icy moons of Saturn are spherical because ice is
more easily deformed than rock.

Hydrostatic equilibrium means that the sur-
face of the body approximately follows an equi-
potential surface of gravity. This is true e.g. on the
Earth, where the sea surface very closely follows

the equipotential surface called the geoid. Due to
internal strength of rocks, continents can deviate
from the geoid surface by a few kilometers but
compared to the diameter of the Earth the surface
topography is negligible.

A rotating planet is always flattened. The
amount of flattening depends on the rotation rate
and the strength of the material; a liquid drop is
more easily deformed than a rock. The shape of
a rotating body in hydrostatic equilibrium can be
derived from the equations of motion. If the ro-
tation rate is moderate, the equilibrium shape of
a liquid body is an ellipsoid of revolution, rotat-
ing around its shortest axis.

If Re and R, are the equatorial and polar radii,
respectively, the shape of the planet can be ex-
pressed as

2 2 2
X y Z
r = 7.2
R§+R§+R§ (7.2)

The dynamical flattening, denoted by f is defined
as
f= Re; Rp .
€
Because R > Ry, the flattening f is always pos-
itive.

The giant planets are in practise close to hy-
drostatic equilibrium, and their shape is deter-
mined by the rotation. The rotation period of Sat-
urn is only 10.5 h, and its dynamical flattening is
1/10 which is easily visible.

Asteroids and other minor bodies are so small
that they are not flattened by rotation. However,
there is an upper limit for a rotation rate of an
asteroid before it breaks apart due to centrifugal
forces. If we assume that the body is held together
only by gravity, we can approximate the maxi-
mum rotation rate by setting the centrifugal force
equal to the gravitational force:

(7.3)

GMm  mv>
_— =, (7.4)
R2 R
where m is a small test mass on the surface at a
distance of R from the center of the body. Substi-

tuting the rotation period P,

2 R
P =
v

’
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we get
GM  47°R
R
or

| R3 [ 3 \/?
P=2rn,|]—=2n = [—. (15)
GM 47 Gp Gp
If we substitute the density p with the mean den-
sity of terrestrial rocks, i.e. 2700 kg m—3, we get
for the minimum rotation period P =~ 2 hours.
The structure of the terrestrial planets
(Fig. 7.10) can also be studied with seismic
waves. The waves formed in an earthquake are
reflected and refracted inside a planet like any
other wave at the boundary of two different lay-
ers. The waves are longitudinal or transversal
(P and S waves, respectively). Both can propagate
in solid materials such as rock. However, only the
longitudinal wave can penetrate liquids. One can
determine whether a part of the interior material
is in the liquid state and where the boundaries
of the layers are by studying the recordings of
seismometers placed on the surface of a planet.
Naturally the Earth is the best-known body, but
quakes of the Moon, Venus, and Mars have also
been observed.
The interior temperatures of the planets are
considerably larger than the surface temperatures.
For example, the temperature in the Earth’s core

Fig. 7.10 Internal structure and relative sizes of the ter-
restrial planets. The percentage shows the volume of the
core relative to the total volume of the planet. In the case
of the Earth, the percentage includes both the outer and
the inner core

is about 4500-5000 K, and in the core of Jupiter
about 30,000 K.

A part of that heat is the remnant of the re-
leased potential energy from the gravitational
contraction during the formation of planets. De-
cay of radioactive isotopes also releases heat.
Soon after the formation of planets intense me-
teorite bombardment was an important source of
heat. Together with heat from short-lived radioac-
tive isotopes this caused melting of terrestrial
planets. The planets were differentiated: the orig-
inally relatively homogeneous material became
segregated into layers of different chemical com-
position. The heaviest elements sank into centre
thus forming a dense core.

The terrestrial planets have an iron-nickel
core. Mercury has the relatively largest core;
Mars the smallest. The density of the core is
around 10,000 kgm™3. The Fe-Ni core is sur-
rounded by a mantle, composed of silicates (com-
pounds of silicon). The density of the outermost
layers is about 3000 kg m~>. The mean density
of the terrestrial planets is 3500-5500 kgm™3.
A thin crust is the outermost layer. The crust
and the upper mantle form a solid lithosphere,
and the partly molten layer below that is the as-
tenosphere. Mean densities of planets are 3500—
5500 kg m~3, but the density of the surface ma-
terial is less than 300 kgm 3.

Rock is not a good heat conductor, but in ter-
restrial planets conduction is the only important
method to transfer from the interior to the sur-
face. Heat transfer by convection depends on the
viscosity material and the temperature gradient.
In the mantle of the Earth slow vertical convec-
tive flows occur below a few hundred kilome-
tres. These flows drive e.g. the motion of the tec-
tonic plates. Continental drift gives rise, for ex-
ample, to mountain formation. The Earth is the
only planet where plate tectonics is active today.
On other terrestrial planets the process has either
ceased long ago or has never occurred.

The giant planets (Fig. 7.11) do not have
a similar isolating outer layer, and convection
can transfer heat all the way to the surface.
Thus the giant planets radiate more energy than
they receive from the Sun. Saturn radiates about
2.8 times the heat it gets from the Sun, more than



7.6 The Structure and Surfaces of Planets

153

Jupiter

Atmosphere
Molecular hydrogen
Metallic hydrogen

Ices
Rocks

Earth

Fig. 7.11 Internal structure and relative sizes of the gi-
ant planets. Differences in size and distance from the Sun
cause differences in the chemical composition and internal
structure. Due to smaller size, Uranus and Neptune do not
have any layer of metallic hydrogen. The Earth is shown
in scale

any other planet. This heat is suspected to origi-
nate from the separation of hydrogen and helium,
when the heavier helium is gradually sinking to-
ward the centre of the planet. In Jupiter the heat
is mainly remnant heat from the time the planet
was born.

The mean densities of the giant planets are
quite low; the density of Saturn, for example, is
only 700 kg m~3. (If Saturn were put in a gigan-
tic bathtub, it would float on the water!) Most of
the volume of a giant planet is a mixture of hy-
drogen and helium. In the centre, there is possibly
a silicate core, the mass of which is a few Earth
masses. The core is surrounded by a layer of
metallic hydrogen. Due to the extreme pressure,
hydrogen is not in its normal molecular form H»,
but dissociated into atoms. In this state, hydrogen
is electrically conducting. The magnetic fields of
the giant planets may originate in the layer of
metallic hydrogen.

Closer to the surface, the pressure is lower and
hydrogen is in molecular form. The relative thick-
ness of the layers of metallic and molecular hy-
drogen vary from planet to planet. Uranus and
Neptune may not have any layer of metallic hy-
drogen because their internal pressure is too low
for dissociation of the hydrogen. Instead, a layer
of “ices” surround the core. This is a layer of
a water-dominant mixture of water, methane and

ammonia. Under the high pressure and tempera-
ture the mixture is partly dissolved into its com-
ponents and it behaves more like a molten salt and
it is also electrically conductive like the metallic
hydrogen.

On top of everything is a gaseous atmosphere,
only a few hundred kilometres thick. The clouds
at the top of the atmosphere form the visible “sur-
face” of the giant planets.

Planetary surfaces are modified by several
geological processes. These include continental
drift, volcanism, meteorite impacts and climate.
The Earth is an example of a body whose surface
has been renewed many times during past aeons.
The age of the surface depends on the processes
and thus implies the geological evolutionary his-
tory of the planet.

Volcanism is a minor factor on the Earth (at
least now), but the surface of the Jovian moon Io
is changing rapidly due to violent volcanic erup-
tions (Fig. 7.12). Volcanism on lo is caused by
frictional heating by tides. Volcanoes have been
observed also on Mars and Venus, but not on the
Moon.

Lunar craters are meteorite impact craters,
common on almost every body with a solid sur-
face. Meteorites are bombarding the planets con-
tinuously, but the rate has been diminishing since
the beginnings of the solar system. The number
of impact craters reflects the age of the surface
(Figs. 7.13 and 7.14).

The Jovian moon Callisto is an example of
a body with an ancient surface which is not
fully inactive. Lack of small craters indicates
some resurfacing process filling and degrading
the minor surface features. The Earth is an ex-
ample of a body, whose atmosphere both pro-
tects the surface and destroys the traces of im-
pacts. All smaller meteorites are burned to ashes
in the atmosphere (one need only note the num-
ber of shooting stars), and some larger bodies are
bounced back to outer space. The traces on the
surface are destroyed very quickly by erosion in
less than a few million years. Venus is an even
more extreme case where all small craters are
missing due to a thick protective atmosphere.

Climate has the greatest influence on the Earth
and Venus. Both planets have a thick atmosphere.



154

7 The Solar System

Fig.7.12 An example of
resurfacing. Two volcanic
plumes on Jupiter’s moon
Io observed by Galileo
spacecraft in 1997. One
plume was captured on the
bright limb or edge of the
moon (inset at upper
right), erupting over a
caldera named Pillan
Patera. The plume is 140
kilometers high. The
second plume, seen near
the terminator, is called
Prometheus. The shadow
of the 75 km high airborne
plume can be seen
extending to the right of the
eruption vent. (NASA/JPL)

On Mars, powerful dust storms deform the land-
scape, too, often covering the planet with yellow-
ish dust clouds.

7.7 Atmospheres and

Magnetospheres

All major planets have an atmosphere; the atmo-
sphere of Mercury, however, is extremely thin.
The giant planets are surrounded by a very thick
gaseous layer that can be regarded as an at-
mosphere. Saturn’s moon Titan has a relatively
thick atmosphere consisting of methane. Also the
dwarf planet Pluto has a thin atmosphere consist-
ing mainly of methane.

The composition, thickness, density and struc-
ture of the atmosphere vary from planet to planet,
but some common features can be found
(Figs. 7.15 and 7.16). Let us first study the de-
pendence of the temperature 7', pressure P, and
density p on the height /. Let us consider a cylin-
der with a length dhi. The change in the pres-
sure dP from the height 4 to h + dh is pro-
portional to the mass of the gas in the cylin-
der:

dP = —gpdh, (7.6)

100

80 Venus

60

Eartl

40

20

Fraction of formed surface [%)]

0 1 1 1
46 4 3 2 1 0
Time before present [109 a]

Fig.7.13 Ages of the surfaces of Mercury, the Earth, the
Moon and Mars. The curve represents the fraction of the
surface which existed at a certain time. Most of the surface
of the Moon, Mercury and Mars are more than 3500 mil-
lion years old, whereas the surface of the Earth is mostly
younger than 200 million years

where g is the acceleration of gravity. Equation
(7.6) is the equation of hydrostatic equilibrium.
(It is discussed in detail in Chap. 11.)

As a first approximation, we may assume that
g does not depend on height. In the case of the
Earth, the error is only about 3 % if g is con-
sidered constant from the surface to a height of
100 km.
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Fig. 7.14 The number of meteorite impact craters is an
indicator of the age of the surface and the shapes of the
craters give information on the strength of the material.
The upper row shows Mercury (left) and the Moon, and the
second row, the Jovian moons Europa (left), Ganymede
(centre) and Callisto. The pictures of the Jovian moons
were taken by the Galileo orbiter with a resolution of
150 metres/pixel. Europa has only a few craters, there
are areas of different ages on the surface Ganymede and
the surface of Callisto is the oldest. Note the grooves and

The equation of state of the ideal gas

PV = NkT (7.7)
gives the expression for the pressure P
kT
p=22 (7.8)
n

where N is the number of atoms or molecules,
k is the Boltzmann constant, w is the mass of one

ridges that indicate different geological processes. IN the
bottom there are two volcanic plumes on Jupiter’s moon
o observed by Galileo spacecraft in 1997. One plume was
captured on the bright limb or edge of the moon (inset at
upper right), erupting over a caldera named Pillan Patera.
The plume is 140 kilometers high. The second plume, seen
near the terminator, is called Prometheus. The shadow of
the 75 km high airborne plume can be seen extending to
the right of the eruption vent. (NASA/JPL and DLR)

atom or molecule and
uN
=5
By using the equation of hydrostatic equilibrium
(7.6) and the equation of state (7.8), we obtain

0

dpP 7

—g-—dh.
p kT
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Fig.7.15 Relative
abundances of the most
abundant gases in the
atmospheres of Venus,
Earth, and Mars. The
number at the bottom of
each circle denotes the
surface pressure in atms
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Fig. 7.16 (a) Temperature as a function of height in the
atmospheres of Venus, Earth, and Mars. (b) Temperature
profiles of the atmospheres of Jupiter and Saturn. The
zero height is chosen to be the point where the pressure
is 100 mbar. Numbers along the curves are pressures in
millibars

Integration yields P as a function of height:

h
ug
P=pryexp(— | =Sdn
°e"p< /o kT )
hdh
=P - =)
°exp< /0 H)

The variable H, which has the dimension of
length, is called the scale height:

(7.9)

kT
ng’

H (7.10)

0,(21%)
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Ny (2.7%) Y Ar(1.6%)

Ar (0.9%)

No (77%) CO,(95%)

1 0.007

Earth Mars

The scale height defines the height at which the
pressure has decreased by a factor e. H is a func-
tion of height, but here we may assume that it is
constant. With this approximation, we obtain

h P
— ln J—
H Py
or, using (7.8),
T
’O—():e—h/H_ (7.11)
©0To

The scale height is an important parameter in
many formulas describing the structure of the at-
mosphere (Table 7.1). For example, if the change
of the pressure or the density is known as a func-
tion of height, the mean molecular weight of the
atmosphere can be computed. The scale height of
the Jovian atmosphere was determined in 1952
when Jupiter occulted a star. With these observa-
tions, the scale height was calculated to be 8 km,
and the mean molecular weight 3—-5 amu (atomic
mass unit, 1/12 of the mass of 12C). Thus the
main components are hydrogen and helium, a re-
sult later confirmed by spacecraft data.

In terrestrial observations, infrared data are
limited by water vapour and carbon dioxide. The
scale height of CO; is 5 km, which means that
the partial pressure is already halved at a height
of 3.5 km. Thus infrared observations can be
made on top of high mountains (like Mauna Kea
in Hawaii). The scale height of water vapour
is 13 km, but the relative humidity and hence
the actual water content is very site- and time-
dependent.

The scale height and the temperature of the
atmosphere define the permanence of the atmo-
sphere. If the speed of a molecule is greater than



7.7 Atmospheres and Magnetospheres 157
Table 7.1 Scale heights of some gases in the atmospheres of Venus, Earth, and Mars

Gas Molecular weight [amu] Earth H [km] Venus H [km] Mars H [km]
Hy 2 120 360 290

(0)) 32 7 23 18

H,0 18 13 40 32

CO, 44 5 16 13

N» 28 8 26 20
Temperature [K] 275 750 260
Acceleration of gravity [m/s?] 9.81 8.61 3.77
the escape velocity, the molecule will escape into v
space. The whole atmosphere could disappear in

a relatively short time.

According to the kinetic gas theory, the mean
velocity v of a molecule depends both on the ki- \
netic temperature 7k of the gas and the mass m of N

the molecule:

3kTq
=)k (7.12)
m
If the mass of a planet is M and its radius R, the
escape velocity is

[2GM
Vo=, —.
R

Even if the mean velocity is smaller than the
escape velocity, the atmosphere can evaporate
into space if there is enough time, since some
molecules will always have velocities exceed-
ing ve. Assuming a velocity distribution, one can
calculate the probability for v > v. Hence it is
possible to estimate what fraction of the atmo-
sphere will disappear in, say, 10° years. As a rule
of thumb, it can be said that at least half of the
atmosphere will remain over 1000 million years
if the mean velocity v < 0.2v,.

Giant planets move far from the Sun; thus
the surface temperature is low. Also, the grav-
itation is strong. Thus it is understandable that
e.g. Jupiter has been able to retain more hydro-
gen than the Earth.

The probability that a molecule close to the
surface will escape is insignificantly small. The
free mean path of a molecule is very small when
the gas density is high (Fig. 7.17). Thus the escap-
ing molecule is most probably leaving from the

(7.13)

Vis's

Fig. 7.17 Close to the surface, the mean free path of
a molecule is smaller than higher in the atmosphere where
the gas density is smaller. The escaping molecules origi-
nate close to the critical layer

uppermost layers. The critical layer is defined as
a height at which a molecule, moving upward, has
a probability 1/e of hitting another molecule. The
part of the atmosphere above the critical layer is
called the exosphere. The exosphere of the Earth
begins at a height of 500 km, where the kinetic
temperature of the gas is 1500-2000 K and the
pressure is lower than in the best terrestrial vacu-
ums.

The magnetosphere is the “outer boundary” of
a planet. Size and shape depend on the strength
of the magnetic field of the planet and on the
solar wind. The solar wind is a flux of charged
particles, mostly electrons and protons, outflow-
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Magnetotail

Fig. 7.18 Structure of the magnetosphere of the Earth. (A. Nurmi/Tiede 2000)

ing from the Sun. The speed of the wind at the
distance of the Earth is about 500 km/s and the
density 5-10 particles/cm® but both values can
change considerably depending on the solar ac-
tivity.

On the solar side there is a bow shock
(Fig. 7.18), typically at a distance of a few tens
of planetary radii (Table 7.2). At the bow shock,
particles of the solar wind first hit the magne-
tosphere. The magnetosphere is limited by the
magnetopause, flattened on the solar side and ex-
tended to a long tail on the opposite side. Charged
particles inside the magnetopause are captured by
the magnetic field and some particles are accel-
erated to great velocities (Fig. 7.19). If the ve-
locities are interpreted according to the kinetic
gas theory, these velocities even correspond to
millions of kelvins. However, the density, and
thus the total energy, is very small. The “hottest”

places found are around Jupiter and Saturn, where
the particle velocities correspond even tempera-
tures of 400 million kelvins.

The region of space containing trapped char-
ged particles, the radiation belts around the Earth,
are named van Allen’s belts. These radiation
zones were discovered by the first US satellite,
Explorer 1, in 1958.

The number of charged particles increases af-
ter strong solar bursts. Some of these particles
“leak” to the atmosphere, resulting in auroras.
Similar effects have also been detected in Jupiter,
Saturn and Uranus.

The solar magnetic field arises from the turbu-
lent motions of the electrically conductive matter.
The energy driving the convection in the layer is
coming from the nuclear fusion in the core. This,
however, cannot explain planetary magnetism.
Neither can the remanent primordial magnetic
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Table 7.2 Planetary magnetic fields

Dipole moment (Earth=1)

Mercury 0.0007 0.003
Venus <0.0004 <0.00003
Earth 1.0 0.305
Mars <0.0002 <0.0003
Jupiter 20,000. 4.28
Saturn 600. 0.22
Uranus 50. 0.23
Neptune 25. 0.14

At equator (1 gauss equals 10~* T)
b+ same as the Earth, |} opposite

¢ Angle between magnetic and rotational axes

Field strength (gauss)?

Polarity” Angle® Magneto-pause?
T 14° 1.5

T 11° 10

U 10° 80

U <1° 20

U 59° 20

U 47° 25

d Average magnetopause distance in the direction of the Sun in planetary radii

Fig.7.19 A glow of hot plasma trapped inside the Earth’s
magnetosphere. The picture was taken by NASA’s Im-
ager for Magnetopause to Aurora Global Exploration (IM-
AGE) spacecraft on August 11, 2000 at 18:00 UT. The
Sun is outside the picture area toward the top right corner.
(NASA and the IMAGE science team)

field explain it because the internal temperature
of planets is well above the Curie point (about
850 K for magnetite). If the temperature is above
the Curie point, ferromagnetic materials will lose
their remanent magnetism.

The planetary dynamo generating the mag-
netic field requires that the planet is rotating and
has a convective layer of electrically conductive
material. The temperature gradient across this
layer must also be high enough to maintain con-
vection. Terrestrial planets have a liquid Fe-Ni
core, or a liquid layer in the core, Jupiter and Sat-
urn have a layer of liquid metallic hydrogen and
Uranus and Neptune have a mixture of water, am-
monia and methane.

The strength of the magnetic field varies a lot
from planet to planet. It can be characterised
by the dipole magnetic moment. The magnetic
moment of Jupiter is about 100 million times
that of Mercury. The magnetic moment of the
Earth is about 7.9 x 10%> gausscm’ that can
be compared to the typical strong electromag-
netic fields achieved in the laboratories, about
100,000 gauss cm?. Inducing such a strong field
requires currents that are of the order of 10° Am-
peres. When divided by the cube of planetary
radii, one gets an estimate of the field strength
on the equator.

The alignment of the magnetic field with re-
spect to the rotation axis of a planet differs from
planet to planet (Fig. 7.20). Saturn’s magnetic
field is close to the ideal case where rotational
axis and magnetic axis coincide. Also the Earth
and Jupiter show reasonably good point dipole
field with a tilt of about 10°. However, fields of
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Fig.7.20 Planetary magnetic fields
Sun

Uranus and Neptune are both offset from the cen-
tre of the planet and tilted by about 50° from the
rotation axis. This may indicate a different mech-
anism for the dynamo.

The magnetic fields of Mercury and the Earth
have an opposite polarity than the fields of
other planets. It is known that the polarity of
the Earth’s magnetic field has reversed several
times over geologic time scales, previously about
750,000 years ago. There are some indications
that the reversal of the polarity is beginning now
because the field strength is declining about one
percent per decade, magnetic poles are moving
more rapidly and the field asymmetry is increas-
ing. The whole process will take several thousand
years during which the Earth’s surface is more
open to the cosmic rays.

The Galileo mission also revealed that the Jo-
vian moon Ganymede has a magnetic field. The
field is weak and too small to have a magneto-
tail or trapped particles around the moon. Cal-
listo, which is of the same size, does not show
any magnetosphere. Neither does our Moon have
any global magnetic field.

7.8  Albedos

The planets and all other bodies of the solar sys-
tem only reflect the radiation of the Sun (we may
neglect here the thermal and radio wave radia-
tion and concentrate mainly on the visual wave-
lengths). The brightness of a body depends on its
distance from the Sun and the Earth, and on the
albedo of its surface. The term albedo defines the
ability of a body to reflect light.

Earth

Fig.7.21 Symbols used in the photometric formulas. The
angle « is the phase angle

If the luminosity of the Sun is Lg, the flux
density at the distance r is (Fig. 7.21)
Lo

F = .
4mrr?

(7.14)

If the radius of the planet is R, the area of its cross
section is 77 RZ, and the total flux incident on the
surface of the planet is

» Lo LoR?

Liyz=7mR =
n 4mrr? 4r2

(7.15)

Only a part of the incident flux is reflected back.
The other part is absorbed and converted into
heat which is then emitted as a thermal emission
from the planet. The Bond albedo A (or spheri-
cal albedo) is defined as the ratio of the emergent
flux to the incident flux (0 < A < 1). The flux re-
flected by the planet is thus

ALoR?

Loy =ALjn = 4,2

(7.16)

The planet is observed at a distance A. If radi-
ation is reflected isotropically, the observed flux
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density should be

_ Lout
4w A2

(7.17)

In reality, however, radiation is reflected aniso-
tropically. If we assume that the reflecting object
is a homogeneous sphere, the distribution of the
reflected radiation depends on the phase angle o
only. Thus we can express the flux density ob-
served at a distance A as

Lout
4w A2

F=Co(x) (7.18)
The function @ giving the phase angle depen-
dence is called the phase function. It is nor-
malised so that @ (@ =0°) = 1.

Since all the radiation reflected from the planet
is found somewhere on the surface of the sphere,
we must have

Lout
/SCq)(oc)4nA2 dS = Loy (7.19)
or
¢ /@( )as=1 (7.20)
D o =1, .
4 A2 S

where the integration is extended over the surface
of the sphere of radius A. The surface element
of such a sphere is dS = A2 dasina d¢, and we
have

b4 2
/(D(a)dS:AZ/ / @ () sina do dg
S a=0J¢=0

e
= A227rf @ (o) sina da.
0

(7.21)

The normalisation constant C is
co 4mA? 2 722

_fsdﬁ(a)dS_fO”cD(a)sinada. '
The quantity
T
q= 2/ @ (o) sina da (7.23)
0

is the phase integral. In terms of the phase inte-
gral the normalisation constant is

C=-.
q

(7.24)

Remembering that Loy = ALin, (7.18) can be
written in the form
CA

1
F= @@L

e (7.25)

The first factor is intrinsic for each object, the sec-
ond gives the phase angle dependence, the third
the distance dependence and the fourth, the inci-
dent radiation power. The first factor is often de-
noted by

CA
r=——.
4
When we substitute here the expression of C
(7.24), and solve for the Bond albedo, we get

(7.26)

An I’ 4
A:—:nFE:nFq:pq.

c (7.27)

Here p = nI" is called the geometric albedo
and q is the previously introduced phase integral.
These quantities are related by
A=pgq. (7.28)
The geometric albedo seems to have appeared
as an arbitrary factor with no obvious physical in-
terpretation. We’ll now try to explain this quan-
tity using a Lambertian surface. A Lambertian
surface is defined as an absolutely white, diffuse
surface which reflects all radiation, i.e. its Bond
albedo is A = 1. Moreover, its surface bright-
ness is the same for all viewing directions, which
means that the phase function is
cose, f0<a<m/2,

i (7.29)
0, otherwise.

D(a) = {

In reality, no such surface exists but there are
some materials which behave almost like a Lam-
bertian surface. A wall with a mat white finish is
a good approximation; although it doesn’t reflect
all incident light, the distribution of the reflected
light is about right, and its brightness looks the
same from all directions.
For a Lambertian surface the constant C is

2

C=————"—"—
Jo @ (o) sina do
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Thus the geometric albedo of a Lambertian sur-
face is

(7.31)

At the phase angle zero @ (o =0°) =1 and
the reflected flux density is

CA 1
= G a2t

If we replace the object with a Lambertian surface
of the same size, we get

4 1

FL = EFLin.

The ratio of these flux densities is

F CA
—=—=nl=p. (7.32)
. 4

Now we have found a physical interpretation
for p: the geometric albedo is the ratio of the
flux densities at phase angle o« = 0° reflected by
a planet and a Lambertian surface of the same
cross section.

The geometric albedo depends on the re-
flectance of the surface but also on the phase
function @. Many rough surfaces reflect most of
the incident radiation directly backward. In such
a case the geometric albedo p is greater than in
the case of an isotropically reflecting surface. On
some surfaces p > 1; the most extreme case is a
mirror, for which the specular reflection, p = oo.
The geometric albedo of solar system bodies vary
between 0.03-1. The geometric albedo of the
Moon is p = 0.12 and the greatest value, p = 1.0,
has been measured for the Saturnian moon Ence-
ladus.

It turns out that p can be derived from the ob-
servations, but the Bond albedo A can be deter-
mined only if the phase integral g is also known.
That will be discussed in the next section.

7.9  Photometry, Polarimetry and

Spectroscopy

Having defined the phase function and albedos
we are ready to derive a formula for planetary
magnitudes. The flux density of the reflected light
is

F= 2<1§(o:)iLin.

47 A?
We now substitute the incident flux
Lo LoR?
42

and the constant factor expressed in terms of the
geometric albedo

CA

A _r_P

4 b4
Thus we get

p 1 LoR?

The observed solar flux density at a distance of
a =1 au from the Sun is

Py = 1O (7.34)
©7 4ra?’ '
The ratio of these is
F @ (a)R%a?
F _pP@)Ra” (7.35)

Fo A2

If the apparent solar magnitude at a distance of
1 au is mg and the apparent magnitude of the
planet m we have

F

p<1§(o{)R2a2
A2r2

pR2 4

=-25lIg

2 a4

R
=-25lgp— —25lg—
Slgp—5 —25lg 455

—251g® ()
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R? Ar
a a

—25lg®(a). (7.36)

If we denote

R2
V(,0)=me —251g p—, (7.37)
a

then the magnitude of a planet can be expressed
as

A
m=V(,0) +51gr—2 —251gd(a). (7.38)
a

The first term V (1, 0) depends only on the size
of the planet and its reflection properties. So it is
a quantity intrinsic to the planet, and it is called
the absolute magnitude (not to be confused with
the absolute magnitude in stellar astronomy!).
The second term contains the distance depen-
dence and the third one the dependence on the
phase angle.

If the phase angle is zero, and we set r = A =
a, (7.38) becomes simply m = V (1, 0). The ab-
solute magnitude can be interpreted as the mag-
nitude of a body if it is at a distance of 1 au from
the Earth and the Sun at a phase angle o = 0°.
As will be immediately noticed, this is physically
impossible because the observer would be in the
very centre of the Sun. Thus V (1, 0) can never be
observed.

By using (7.37) and (7.38) at o = 0°, the ge-
ometric albedo can be solved for in terms values
all obtainable from observations.

2
b= (E) 10-04mo —mo)

— (7.39)

where mg = m(a¢ = 0°). As can easily be seen,
p can be greater than unity but in the real world, it
is normally well below that. Typical values for p
are in the range 0.1-0.5.

The last term containing the phase angle de-
pendence in (7.38) is the most problematic one.
For many objects the phase function is not known
very well. This means that from the observations,
one can calculate only

V(@) =V(1,0)—25lgd(a), (7.40)

which is the absolute magnitude at phase an-
gle a. V(1,a), plotted as a function of the phase
angle, is called the phase curve (Fig. 7.22). The
phase curve extrapolated to o« = 0° gives V (1, 0).
The shape of the phase curve is very different for
objects with or without an atmosphere.

The Bond albedo can be determined only if
the phase function @ is known. Superior planets
(and other bodies orbiting outside the orbit of the
Earth) can be observed only in a limited phase an-
gle range, and therefore @ is poorly known, ex-
cept for those bodies that have been observed by
spacecraft. The situation is somewhat better for
the inferior planets. Especially in popular texts
the Bond albedo is given instead of p (naturally
without mentioning the exact names!). A good
excuse for this is the obvious physical meaning of
the former, and also the fact that the Bond albedo
is normalised to [0, 1].

Opposition Effect If an object has an atmo-
sphere it reflects light more or less isotropically
to all directions. The flux density of the reflected
light is then proportional to the area of the visible
illuminated surface (actually to the projection of
this area on a plane perpendicular to the line of
sight). Atmosphereless bodies reflect light more
strongly to the direction of the incident light.
Hence the brightness increases rapidly when the
phase angle approaches zero. When the phase is
larger than about 10°, the changes are smaller.
This rapid brightening close to the opposition is
called the opposition effect. An atmosphere de-
stroys the opposition effect.

The full explanation is still in dispute. A qual-
itative (but only partial) explanation is that close
to the opposition, no shadows are visible. When
the phase angle increases, the shadows become
visible and the brightness drops. The main rea-
son, however, is the coherent backscatter due to
the wave properties of the light.

Magnitudes of Asteroids The shape of the
phase curve depends on the geometric albedo. It
is possible to estimate the geometric albedo if the
phase curve is known. This requires at least a few
observations at different phase angles. Most crit-
ical is the range 0°-10°. A known phase curve
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Fig. 7.22 The phase curves and polarisation of differ-
ent types of asteroids. The asteroid characteristics are dis-
cussed in more detail in Sect. 8.11. (From Muinonen et

can be used to determine the diameter of the
body, e.g. the size of an asteroid. Apparent di-
ameters of asteroids are so small that for ground
based observations one has to use indirect meth-
ods, like polarimetric or radiometric (thermal ra-
diation) observations (Fig. 7.22). Beginning from
the 1990’s, imaging made during spacecraft fly-
bys and with the Hubble Space Telescope have
given also direct measures of the diameter and
shape of asteroids.

When the phase angle is greater than a few de-
grees, the magnitude of an asteroid depends al-
most linearly on the phase angle. Earlier this lin-
ear part was extrapolated to o = 0° to estimate
the opposition magnitude of an asteroid. Due to
the opposition effect the actual opposition mag-
nitude can be considerably brighter.

In 1985 the TAU adopted the HG system for
magnitudes of atmosphereless bodies. Formally,
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al., Asteroid photometric and polarimetric phase effects,
in Bottke, Binzel, Cellino, Paolizhi (Eds.) Asteroids III,
University of Arizona Press, Tucson)

it was semi-empirical, although it was based on
photometric theories by Lumme and Bowell. In
the 2012 meeting this was replaced by a new
HG G, system. Although the older HG system
was useful in many cases, it was not satisfac-
tory if the opposition effect was very small or re-
stricted to very small phase angles.

In the new system the magnitude at phase an-
gle a is

vV, a)
= —251g[a1P1(@) + a2®2(a) + a3 P3 ()]
=H —2.51g[G 191 () + G2®2 ()

+ (1 -G = G)P3(w)], (7.41)

where the values of the basis functions @, &,
and @3 are found by spline interpolations from
the following tables:
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al’] !

0.0 1.0

1.5 0.75

30.0 0.33486016
60.0 0.13410560
90.0 0.05110476
120.0 0.02146569
150.0 0.00363970

®(7.5%) = —1.90986
@ (150°) = —0.09133

al®] )

0.0 1.0

15 0.925

30.0 0.62884169
60.0 0.31755495
90.0 0.12716367
120.0 0.02237390
150.0 0.00016506

9(7.5°) = —0.57330
@,(150°) = —8.657 x 1078

a[’] D3

0.0 1.0

0.3 0.83381185
1.0 0.57735424
2.0 0.42144772
40 0.23174230
8.0 0.10348178
12.0 0.06173347
20.0 0.01610701
30.0 0.0

®4(0°) = —0.10630

®}(30°) =0

When the phase angle is zero all the functions
have the value 1. If the phase angle is o < 7.5°,
@ ans @, are linear functions: @ (ax) =1 —
a/30° ®r() =1 —a/100°.

Fitting an expression in terms of the basis
functions to the observed phase curve one gets
the coefficients a;, and then further

H = —-2.51g(a; + az + a3),

Gi=a1/(a1 +az +a3z),
G2 =az/(ay +az + az),

(7.42)

When the phase angle is zero, we have

V(1,00)=H —-251g[G1 + G2+ 1 -G — G3]

—H, (7.43)

and hence H is just the absolute magnitude in op-
position. The constants G| and G, describe the
shape of the phase curve.

Asteroid data has earlier been published in the
yearbook Efemeridy malyh planet. Currently the
best source is the web pages of the Minor Planet
Center: http://www.cfa.harvard.edu/iau/services/
WebCSAccess.html.

Polarimetric Observations The light reflected
by the bodies of the solar system is usually po-
larised, at least to some degree. The amount of
polarisation depends on the reflecting material
and also on the geometry: polarisation is a func-
tion of the phase angle. The degree of polarisa-
tion P is defined as

F| —F
p_FL—F

= , 7.44
F, + Fj ( )

where F) is the flux density of radiation, per-
pendicular to a fixed plane, called the scattering
plane, and F is the flux density parallel to the
plane. In solar system studies, polarisation is usu-
ally referred to the plane defined by the Earth, the
Sun, and the object. According to (7.44), P can
be positive or negative; thus the terms “positive”
and “negative” polarisation are used.

The degree of polarisation as a function of the
phase angle depends on the surface structure and
the atmosphere. The degree of polarisation of the
light reflected by the surface of an atmosphereless
body is positive when the phase angle is greater
than about 20°. Closer to opposition, polarisa-
tion is negative. A dependence between the polar-
isation and geometric albedo has been observed.
This gives an independent method for determin-
ing the albedo and the size.

When light is reflected from an atmosphere,
the degree of polarisation as a function of the
phase angle is more complicated. For some phase
angles P can be highly negative. Using the theory
of radiative transfer, one can compute how the at-
mosphere affects light and its polarisation. Com-
paring these results with observations one can ob-
tain information about the contents of the atmo-
sphere. For example, the composition of Venus’
atmosphere could be studied by polarisation stud-
ies before any probes were sent to the planet.


http://www.cfa.harvard.edu/iau/services/WebCSAccess.html
http://www.cfa.harvard.edu/iau/services/WebCSAccess.html
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Fig.7.23 Spectra of the Moon and the giant planets. Strong absorption bands can be seen in the spectra of Uranus and

Neptune. (Lowell Observatory Bulletin 42 (1909))

Planetary Spectroscopy The photometric and
polarimetric observations discussed above were
monochromatic. However, the studies of the at-
mosphere of Venus also used spectral informa-
tion. Broadband UBV photometry or polarime-
try is the simplest example of spectrophotometry
(spectropolarimetry). The term spectrophotome-
try usually means observations made with sev-
eral narrowband filters. Naturally, solar system
objects are also observed by means of “classical”
spectroscopy.

Spectrophotometry and polarimetry give in-
formation at discrete wavelengths only. In prac-
tise, the number of points of the spectrum (or
the number of filters available) is often limited
to 20-30. This means that no details can be seen
in the spectra. On the other hand, in ordinary
spectroscopy, the limiting magnitude is smaller,
although the situation is rapidly improving with
the new generation detectors, such as the CCD
camera.

The spectrum observed is the spectrum of the
Sun. Generally, the planetary contribution is rel-

atively small, and these differences can be seen
when the solar spectrum is subtracted. The Ura-
nian spectrum is a typical example (Fig. 7.23).
There are strong absorption bands in the near-
infrared. Laboratory measurements have shown
that these are due to methane. A portion of the
red light is also absorbed, causing the greenish
colour of the planet. The general techniques of
spectral observations are discussed in the context
of stellar spectroscopy in Chap. 9.

7.10 Thermal Radiation of the
Planets

Thermal radiation of the solar system bodies de-
pends on the albedo and the distance from the
Sun, i.e. on the amount of absorbed radiation. In-
ternal heat is important in Jupiter and Saturn, but
we may neglect it at this point.

By using the Stefan-Boltzmann law, the flux
on the surface of the Sun can be expressed as

2 4
L =471R®0T®.
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If the Bond albedo of the body is A, the fraction
of the radiation absorbed by the planet is (1 —
A). This is later emitted as heat. If the body is at
a distance r from the Sun, the absorbed flux is

Rio T2 R?

(-4

Laps = (7.45)
There are good reasons to assume that the body
is in thermal equilibrium, i.e. the emitted and
the absorbed fluxes are equal. If not, the body
will warm up or cool down until equilibrium is
reached.

Let us first assume that the body is rotating
slowly. The dark side has had time to cool down,
and the thermal radiation is emitted mainly from
one hemisphere. The flux emitted is

Lem =27 R*0 T, (7.46)
where T is the temperature of the body and 27 R?
is the area of one hemisphere. In thermal equilib-
rium, (7.48) and (7.49) are equal:

2 14
R®T®

21— A)=2T",
p

whence

1— A\ /A4 Ro 1/2
r=le\—2~) \7) -

A body rotating quickly emits an approximately
equal flux from all parts of its surface. The emit-
ted flux is then

(7.47)

Lem =47 R*6 T*

and the temperature

1— A\ /4 Ro 172

The theoretical temperatures obtained above
are not valid for most of the major planets. The
main “culprits” responsible here are the atmo-
sphere and the internal heat. Measured and the-
oretical temperatures of some major planets are
compared in Table 7.3. Venus is an extreme ex-
ample of the disagreement between theoretical
and actual figures. The reason is the greenhouse

(7.48)

Table 7.3 Theoretical and observed temperatures of
some planets

Albedo | Distance Theoretical | Observed
from temperature | maximum
the Sun | [K] temperature
AUl 750y (7.51) (K

Mercury 0.06 | 0.39 525 440 700
Venus | 0.76 0.72 270 1230 | 750
Earth 0.36 1.00 290 250 310
Mars 0.16 1.52 260 215 290
Jupiter | 0.73 5.20 110 90 | 130

effect: radiation is allowed to enter, but not to exit.
The same effect is at work in the Earth’s atmo-
sphere. Without the greenhouse effect, the mean
temperature could be well below the freezing
point and the whole Earth would be ice-covered.
Particularly strong the effect is on Venus, where
the surface temperature is hundreds of degrees
higher than the theoretical value.

According to the Wien displacement law
(5.22) Amax = b/T the radiation maximum of
a body at 200 K is at A = 14 um, deep in in-
frared. When the thermal radiation in the infrared
or radio range is measured the temperature can be
found, and further the Bond albedo can be calcu-
lated from (7.47) or (7.48). If also the phase func-
tion is known the geometric albedo and hence the
diameter can be evaluated.

7.11  Origin of the Solar System
Cosmogony is a branch of astronomy which stud-
ies the origin of the solar system. The first steps
of the planetary formation processes are closely
connected to star formation.

Although the properties and details of the bod-
ies of our solar system (see next chapter) may
look wildly different there are some distinct fea-
tures which have to be explained by any serious
cosmogonical theory. These include:

— planetary orbits are almost coplanar and also
parallel to the solar equator;

— orbits are almost circular;

— planets orbit the Sun counterclockwise, which
is also the direction of solar rotation;
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Table 7.4 True distances of the planets from the Sun and
distances according to the Titius—Bode law (7.49)

Planet n Calculated True
distance distance
[AU] [AU]
Mercury —00 0.4 0.4
Venus 0 0.7 0.7
Earth 1 1.0 1.0
Mars 2 1.6 1.5
Ceres 3 2.8 2.8
Jupiter 4 5.2 5.2
Saturn 5 10.0 9.2
Uranus 6 19.6 19.2
Neptune 7 38.8 30.1
Pluto 8 77.2 39.5

— planets also rotate around their axes counter-
clockwise (excluding Venus and Uranus);

— planets have 99 % of the angular momentum
of the solar system but only 0.15 % of the total
mass;

— terrestrial and giant planets exhibit physical
and chemical differences;

— relative abundances of ices and rocks as a func-
tion of the distance from the Sun.

Sometimes also the empirical Titius-Bode law
is included (Table 7.4). It states that

a=0440.3x2",

n=-00,0,1,2,... (7.49)
where the semimajor axis a is expressed in au.

It is sometimes mentioned that the first scien-
tific theory was the vortex theory by the French
philosopher René Descartes in 1644; however it
was concerned about the motion of the solar sys-
tem bodies and not its origin.

The first modern cosmogonical theories were
introduced in the 18th century. One of the first
cosmogonists was Immanuel Kant, who in 1755
presented his nebular hypothesis. According to
this theory, the solar system condensed from
a large rotating nebula. Kant’s nebular hypoth-
esis is surprisingly close to the basic ideas of
modern cosmogonical models. In a similar vein,
Pierre Simon de Laplace suggested in 1796 that

the planets have formed from gas rings ejected
from the equator of the collapsing Sun.

The main difficulty of the nebular hypothesis
was its inability to explain the distribution of an-
gular momentum in the solar system. Although
the planets represent less than 1 % of the total
mass, they possess 98 % of the angular momen-
tum. There appeared to be no way of achieving
such an unequal distribution. A second objection
to the nebular hypothesis was that it provided no
mechanism to form planets from the postulated
gas rings.

Already in 1745, Georges Louis Leclerc de
Buffon had proposed that the planets were formed
from a vast outflow of solar material, ejected
upon the impact of a large comet. Various catas-
trophe theories were popular in the 19th century
and in the first decades of the 20th century when
the cometary impact was replaced by a close en-
counter with another star. The theory was devel-
oped, e.g. by Forest R. Moulton (1905) and James
Jeans (1917).

Strong tidal forces during the closest approach
would tear some gas out of the Sun; this mate-
rial would later accrete into planets. Such a close
encounter would be an extremely rare event. As-
suming a typical star density of 0.15 stars per
cubic parsec and an average relative velocity of
20 km/s, only a few encounters would have taken
place in the whole Galaxy during the last 510°
years. The solar system could be a unique speci-
men. This is clearly against modern observations
(Chap. 22).

The main objection to the collision theory is
that most of the hot material torn off the Sun
would be thrown out to space, rather than remain-
ing in orbit around the Sun. There also was no
obvious way how the material could form a plan-
etary system.

In the face of the dynamical and statistical dif-
ficulties of the collision theory, the nebular hy-
pothesis was revised and modified in the 1940’s.
In particular, it became clear that magnetic forces
and gas outflow could efficiently transfer angular
momentum from the Sun to the planetary nebula.
The main principles of planetary formation are
now thought to be reasonably well understood.

The oldest rocks found on the Earth are about
3.7 x 10° years old; some lunar and meteorite
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Fig.7.24 Hubble Space
Telescope images of four
protoplanetary disks,
“proplyds”, around young
stars in the Orion nebula.
The disk diameters are two
to eight times the diameter
of our solar system. There
is a T Tauri star in the
centre of each disk. (Mark
McCaugh-
rean/Max-Planck-Institute
for Astronomy, C. Robert
O’Dell/Rice University,
and NASA)

samples are somewhat older. When all the facts
are put together, it can be estimated that the Earth
and other planets were formed about 4.56 x 10°
years ago. On the other hand, the age of the
Galaxy is at least twice as high, so the overall
conditions have not changed significantly during
the lifetime of the solar system. Moreover, there
is even direct evidence nowadays, such as other
planetary systems and protoplanetary disks, pro-
plyds (Fig. 7.24).

The Sun and practically the whole solar sys-
tem simultaneously condensed from a rotating
collapsing cloud of dust and gas, the density of
which was some 10,000 atoms or molecules per
cm’ and the temperature 10-50 K. The elements
heavier than helium were formed in the interiors
of stars of preceding generations, as will be ex-
plained in Sect. 12.8. The collapse of the cloud
was initiated perhaps by a shock wave emanating
from a nearby supernova explosion.

The original mass of the cloud must be thou-
sands of Solar masses to exceed the Jeans mass.

When the cloud contracts the Jeans mass de-
creases. Cloud fragments and each fragment con-
tract independently as explained in later chapters
of star formation. One of the fragments became
the Sun.

When the fragment continued its collapse, par-
ticles inside the cloud collided with each other.
Rotation of the cloud allowed the particles to sink
toward the same plane, perpendicular to the rota-
tion axis of the cloud, but prevented them from
moving toward the axis. This explains why the
planetary orbits are in the same plane.

The mass of the proto-Sun was larger than
the mass of the modern Sun. The flat disk in the
plane of the ecliptic contained perhaps 1/10 of
the total mass. Moreover, far outside, the rem-
nants of the outer edges of the original cloud were
still moving toward the centre. The Sun was los-
ing its angular momentum to the surrounding gas
by means of the magnetic field. When nuclear
reactions were ignited, a strong solar wind car-
ried away more angular momentum from the Sun.
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The final result was the modern, slowly rotating
Sun.

Gravitational and viscous torques transferred
the angular momentum outwards. The former
means a density wave caused by the instability of
the disk, transferring bot mass and angular mo-
mentum outwards. Collisions between dust parti-
cles increased the velocities of outer particles and
slowed down inner particles. Thus most particles
moved inwards but the angular momentum out-
wards and the disk spread out.

Later, when nuclear reactions started, the
strong solar wind transferred more angular mo-
mentum. At this T Tauri stage the protosun lost
mass as much as 10™8 Mg /a in the form of solar
wind.

Collisions of the disk particles continued. Ini-
tially individual particles stick together because
of the weak intermolecular van der Waals forces.
In less than 10,000 years the particle size in-
creased from a few micrometres to millimetres.
The growth rate was then proportional to the
cross sections of the particles.

When the particles became bigger the growth
rate increased considerably and became propor-
tional to the fourth power of the particle radius.
The reason for this was that the weak gravitation
of bigger particles started attract gas and dust. If
the mass of a particle is M and radius R and the
relative velocity of a dust particle Vy (Fig. 7.25)
the effective cross section of collisions to the big-

ger particle is s2:

s2 = <R2+

Since M o R3 we have 5% o« R*.

The velocity of the gas was about 0.5 %
smaller than the orbital velocity, and thus parti-
cles moved faster than gas and swept away the
gas and dust. This resulted in rapidly growing
planetesimals, with diameters from a few metres
to kilometres.

Since big particles were moving faster than
the gas they experienced a small friction slow-
ing their velocity. The effect was strongest on me-
tre size particles. Thus small planetesimals had to
grow bigger in a few thousand years or drift down
to the Sun.

(7.50)

Fig.7.25 If a particle s .
passes a massive object at a
close distance it will hit the
larger body and increase its
mass

1
P——
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When the planetesimals collided (Fig. 7.26)
they grew bigger but the growth rate was no more
proportional to the fourth power of the radius but
slower. When the planetesimals reached the size
of planets their mutual gravitation became in-
creasingly important. Collisions of planetesimals
and protoplanets shaped the solar system until it
to some extent looked like the current system.
The formation of the Moon, the slow retrograde
of Venus and the abnormal orientation of the ro-
tation axis of Uranus were caused by collisions of
objects of the size of Mars.

The formation of Jupiter and Saturn took
about 10°~10° years, terrestrial planets 106—107
years, Uranus and Neptune 107-10® years. The
Nice model (Sect. 7.12) suggests that originally
Neptune was closer to the Sun than Uranus.
Resonances caused Saturn, Uranus and Neptune
to drift farther from the Sun, whence Neptune
moved outside Uranus. Jupiter, on the other hand,
moved closer to the Sun.

The strong perturbations by Jupiter prevented
the formation of a large planet between Mars and
Jupiter. The objects in this asteroid belt are either
planetesimals or shattered protoplanets.

Depending on the volatility the matter of the
solar system can be divided roughly into three
categories: Gases, mainly hydrogen and helium,
consisting of about 98.2 % of the total mass of
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Fig.7.26 A schematic
plot on the formation of the
solar system. (a) A large
rotating cloud, the mass of
which was 3—4 solar
masses, began to condense.
(b) The innermost part
condensed most rapidly
and a disk of gas and dust
formed around the
proto-sun. (¢) Dust
particles in the disk
collided with each other
forming larger particles

b)

and sinking rapidly to

a single plane. (d) Particles
clumped together into
planetesimals which were
of the size of present
asteroids. (e) These clumps
drifted together, forming
planet-size bodies which
began (f) to collect gas and
dust from the surrounding
cloud. (g) The strong solar
wind “blew” away extra
gas and dust; the planet
formation was finished
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Fig. 7.27 Temperature distribution in the solar system
during planet formation. The present chemical composi-
tion of the planets reflects this temperature distribution.
The approximate condensing temperatures of some com-
pounds have been indicated

the solar system and remaining gaseous until very
close to the absolute zero. Ices, about 1.4 %, melt-
ing around 160 K at the pressure of the initial
nebula. Rocks, about 0.4 %, melting over temper-
atures exceeding 1000 K (Fig. 7.27).

Planets from Mercury to Mars consist mainly
of rocks. When they were born the temperature
in that region was too high for gases and ices
to remain bound to planets. In this region over
99 % of the matter remained outside the plan-
ets. The temperature distribution is seen in the
chemical contents of the planets. At the distance
of Mercury the temperature had decreased below
1400 K, which meant that compounds of iron and
nickel could condense from the nebula. In fact,
they form about 60 % of the mass of Mercury.
When we move outwards other elements become
more abundant. At the distance of the Earth the
temperature is about 600 K and near Mars only
450 K. The mantle of the Earth contains about
10 % of iron(Il)oxide FeO. In Mars there is con-
siderably more FeO, but in Mercury hardly any-
thing at all.

Table 7.5 gives the mass distribution of the
solar system and Table 7.6 the minimum mass
needed for the existing planets. This takes into ac-
count the different composition of the planets and
the Sun. In reality, the mass of the accretion disk
must be much bigger, since not all of the mass did
not end up in planets.

Using the minimum mass we can also calcu-
late the required density distribution of the ac-

Table 7.5 Mass distribution of the solar system

Part of the (%) total mass

Sun 99.80
Jupiter 0.10
Comets 0.05
Other planets 0.04
Moons and rings 0.00005
Asteroids 0.000002
Dust 0.0000001

cretion disk. If the mass of the planet is M and
it has accreted its material in the distance range
([ro, r1]) from a disk whose density is p(r), we

get
2w r
M:/,o(r)dA:/ / p(r)rdrdd
0 ro

r
=2 / p(r)rdr.
T

0

(7.51)

The density profile of the disk seems to obey
a r—2 law pretty well except in the asteroid belt,
where these is a clear mass defect (Fig. 7.28).

At the distance of Jupiter and Saturn the tem-
perature was already so low that icy bodies could
form. Some satellites of Saturn are examples of
such bodies. From the surrounding cloud the gi-
ant planets collected gas that could stay around
the planets because they were relatively far from
the Sun. Jupiter and Saturn contain mostly hy-
drogen and helium. In Uranus and Neptune the
content of these gases is smaller, possibly around
twenty percent.

Continuous collisions of meteoroids, shrink-
ing of the planets under their own gravity, and
radioactive decay of relatively short lived nu-
clei produced a lot of heat. Heating caused par-
tial melting of planets, leading to differentiation:
heavier elements sank down and lighter ones rose
towards the surface.

The bombardment continued for about half a
billion years. Its effects are still seen on most
solid bodies. For instance, the Lunar maria are
remnants of that era. On the Earth the tectonic
resurfacing and erosion have destroyed most me-
teorite craters.
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Table 7.6 Minimum mass of the primordial nebula
needed for the planets. The factor is a value by which the
mass of the planet has to be multiplied to make the compo-

sition consistent with the Sun. The Nice model will change
the values of this table and Fig. 7.28

Distance [au] Mass Earth =1 Factor Total mass Cumulative mass
Mercury 0.4 0.055 350 19.3 19
Venus 0.7 0.815 270 220.1 239
Earth + Moon 1.0 1.012 235 237.8 477
Mars 1.5 0.107 235 25.1 502
Asteroids 2.8 0.002 200 0.4 503
Jupiter 5.2 317.89 5 1589.5 2092
Saturn 9.6 95.17 8 761.4 2853
Uranus 19.2 14.56 15 218.4 3072
Neptune 30.1 17.24 20 344.8 3417
Pluto 40 0.005 70 0.4 3417
Fig.7.28 Surface density 100000
[kg/mz] of the accretion |3
disc as a function of _ 100001 | % s % .
distance. The density 1000 = > | § 5
follows approximately an > S g \‘\ g |8
r~2 law. Especially around = 100 = 5 S :\\D z
. = = S S
the asteroid belt there T 2
seems to be a mass deficit, 3 @
indicating that a Q 11 ) "
considerable amount of g o 'g 2
matter has been removed @ ’ D =]
elsewhere. The vertical 0.011

lines separate regions from 0:1
which each planet has
accreted its material

Due to the perturbations by large planets the
“leftover” planetesimals collided to planets or
were thrown out to the outskirts of the solar sys-
tem or even out to the interstellar space. What re-
mained where mainly the asteroids currently on
stable orbits. Lots of low-density objects, comets,
were thrown to the outer regions of the solar sys-
tem. These form the current Oort cloud. The total
mass of the Oort cloud may be even 40 Mg, and
it may contain billions of comets.

Also the small bodies beyond the orbit of Nep-
tune and the somewhat more distant Kuiper belt
may have originated nearer to the Sun.

Planetary formation ended when the nuclear
reactions of the Sun started and the Sun entered
its T Tauri stage (Sect. 14.3). The strong solar
wind caused the Sun to lose mass and angular
momentum. The mass loss was about 1070 Mg

1 10 100
distance from the Sun [AU]

a year, yet altogether maybe less than 0.1 M.
The solar wind blew away the gas dust still in the
interplanetary space, and thus the planets could
not accrete any more matter.

The solar wind or radiation pressure has no
effect on millimetre- and centimetre-sized parti-
cles. However, they will drift into the Sun because
of the Poynting—Robertson effect, first introduced
by John P. Poynting in 1903. Later H.P. Robertson
derived the effect by using the theory of relativity.
When a small body absorbs and emits radiation, it
loses its orbital angular momentum and the body
spirals to the Sun. At the distance of the asteroid
belt, this process takes only a million years or so.
Therefore the meteors wee see nowadays must be
much younger than the solar system. A relatively
big fraction of them is material disrupted from
comets.
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7.12 Nice Models

It has been assumed that the distances of the plan-
ets have not changed much since they were born.
The most essential feature of the Nice model is
that the giant planets were born much closer to
the Sun. The model is based on a large number
of computer simulations, carried out in the Cote
d’ Azur observatory near Nice.

The planets drifted to their current orbits due
to their mutual gravity and resonances. At the
same time planetary perturbations made the left-
over material either to collide with planets or
move outwards to the asteroid belt, Kuiper belt
and Oort cloud.

The original Nice model could not properly
explain all properties of the solar system, like the
structure of the Kuiper belt. These problems were
fixed in the newer Nice model 2.

There are several versions of the models with
varying details. They seem to approach the cor-
rect explanation, it may still be too early to dis-
cuss here their rather complicated details before
they have been confirmed more convincingly.

Box 7.1 (Tides) Let the tide generating body,
the mass of which is M to be at point Q at a dis-
tance d from the centre of the Earth. The poten-
tial V at the point A caused by the body Q is

GM
V(A) = PRt ey

where s is the distance of the point A from the
body Q.

Applying the cosine law in the triangle
O AQ, the distance s can be expressed in terms
of the other sides and the angle z = A0 Q

s2=4d> + r2 —2dr coS Z,
where r is the distance of the point A from the
centre of the Earth. We can now rewrite (1)

GM

V(A) = .
Vd? +r?2 —2drcosz

2

When the denominator is expanded into a Tay-
lor series

SRS RO P
X ANl ——x4+-x"—---
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where

r2

X = - 22 cosz
and ignoring all terms higher than or equal to
1/d* one obtains
GM GM
V(A) = e + ?rcosz
2
Gd#%@coszz -1). 3
The gradient of the potential V(A) gives
a force vector per mass unit. The first term of
(3) vanishes, and the second term is a constant
and independent of r. It represents the central
motion. The third term of the force vector, how-
ever, depends on r. It is the main term of the
tidal force. As one can see, it depends inversely
on the third power of the distance d. The tidal
forces are diminished very rapidly when the
distance of a body increases. Therefore the tidal
force caused by the Sun is less than half of that
of the Moon in spite of much greater mass of
the Sun.
We may rewrite the third term of (3) as

) 1
Vo =2D| cos Z_§ , (@)
where
3 r2
D=-GM—
4 d3

is called Doodson’s tidal constant. It’s value
for the Moon is 2.628 m? s~2 and for the Sun
1.208 m? s~2. We can approximate that z is the
zenith angle of the body. The zenith angle z can
be expressed in terms of the hour angle /# and
declination § of the body and the latitude ¢ of
the observer

€08z = coshcosdcos ¢ + siné sin¢.
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Inserting this into (4) we obtain after a lengthy
algebraic operation

Vo=D (0052 o) cos2 8 cos 2h

+ sin2¢ cos 28 cos h

+ (3sin® ¢ — 1)(sin28 — %))

=D +T+ 2). (5)

Equation (5) is the traditional basic equation of
the tidal potential, the Laplace’s tidal equation.
In (5) one can directly see several charac-
teristics of tides. The term § causes the semi-
diurnal tide because it depends on cos 24. It has
two daily maxima and minima, separated by 12
hours, exactly as one can obtain in following
the ebb and flood. It reaches its maximum at
the equator and is zero at the poles (cos® ¢).

The term T expresses the diurnal tides
(cos h). It has its maximum at the latitude +45°
and is zero at the equator and at the poles
(sin2¢). The third term Z is independent of the
rotation of the Earth. It causes the long period
tides, the period of which is half the orbital pe-
riod of the body (about 14 days in the case of
the Moon and 6 months for the Sun). It is zero
at the latitude £35.27° and has its maximum
at the poles. Moreover, the time average of Z
is non-zero, causing a permanent deformation
of the Earth. This is called the permanent tide.
It slightly increases the flattening of the Earth
and it is inseparable from the flattening due to
the rotation.

The total value of the tidal potential can be
computed simply adding the potentials caused
by the Moon and the Sun. Due to the tidal
forces, the whole body of the Earth is de-
formed. The vertical motion Ar of the crust can
be computed from

Va
Ar=h—=0.06V, [m], 6)

8
where g is the mean free fall acceleration, g ~
9.81 ms~2 and 4 is a dimensionless number,
the Love number, h ~ 0.6, which describes the

elasticity of the Earth. In the picture below,
one can see the vertical motion of the crust in
Helsinki, Finland (¢ = 60°, A = 25°) in Jan-
uary 1995. The non-zero value of the temporal
mean can already be seen in this picture.
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The tides have other consequences, too. Be-
cause the Earth rotates faster than the Moon or-
bits the Earth, the tidal bulge does not lie on
the Moon—Earth line but is slightly ahead (in
the direction of Earth’s rotation), see below.

15 W [kWh/m2] without extinction (k = 1) |
L —— extinction k=0.8
: ¢®=90°
L ¢=0°
10| -
| ¢=0° ¢ =60°
r S
5| s i
- & o
S
I I
| s

O 1 1 1 1 1 1 1 1 1
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Due to the drag, the rotation of the Earth
slows down by about 1-2 ms per century. The
same reason has caused the Moon’s period
of rotation to slow down to its orbital period
and the Moon faces the same side towards the
Earth. The misaligned bulge pulls the Moon
forward. The acceleration causes the increase
in the semimajor axis of the Moon, about 3 cm
per year.

7.13 Examples

Example 7.1 (Sidereal and Synodic Period) The
time interval between two successive oppositions
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of Mars is 779.9 d. Calculate the semimajor axis
of Mars’ orbit.

The synodic period is 779.9 d = 2.14 years.
We obtain from (7.2)

1 1 1
—=-—-——=053 =

P, =1.88 a.
P, 1 214

By using Kepler’s third law (m <« M), the semi-
major axis is found to be

a=P¥?=1.88*3=1.52au.

Example 7.2 (Solar Energy Flux on the Earth)
Calculate the diurnal solar energy flux per unit
area at the distance of the Earth.

The solar flux density outside the Earth’s at-

mosphere (the solar constant) is Sop = 1370 W/ m2.

Consider a situation at latitude ¢, when the solar
declination is §. If the atmospheric extinction is
neglected, the flux density on the surface is
S = Spsina,

where a is the elevation of the Sun. We can write
sina as a function of latitude, declination, and
hour angle A:

sina = sind sin ¢ + cos § cos ¢ cos h.
On a cloudless day, the energy is received be-
tween sunrise and sunset. The corresponding
hour angles can be obtained from the equation
above, when a = 0:

coshg=—tanétan¢.

In the course of one day, the energy received on

a unit area is
ho
W:/ Sdr.
—ho

The hour angle & is expressed in radians, so the
time 7 is

where P = 1 d = 24 h. The total energy is thus
ho
w =f So(sin§ sin¢ + cosé cos ¢ cos h)
—hg
P

x —dh
2

SoP e .
= —— (hgsind sin¢g + cos § cos ¢ sin hg),
T

where
ho = arccos(—tand tan ).

For example near the equator (¢ = 0°) coshg =0
and

SoP
Wb =0 = 22" coss.
T

At those latitudes where the Sun will not set, hy =
7 and

Weire = So P sin§ sin¢.

Near the poles, the Sun is always circumpolar
when above the horizon, and so

W (¢ = 90°) = S P sins.

Interestingly enough, during the summer when
the declination of the Sun is large, the polar ar-
eas receive more energy than the areas close to
the equator. This is true when

W(p =90°) > W(¢ =0
& SoPsiné > SoPcosd/m
& tand > 1/m
& 8> 17.7°

The declination of the Sun is greater than this
about two months every summer.

However, atmospheric extinction diminishes
these values, and the loss is at its greatest at the
poles, where the elevation of the Sun is always
relatively small. Radiation must penetrate thick
layers of the atmosphere and the path length is
comparable to 1/sina. If it is assumed that the
fraction k of the flux density reaches the surface
when the Sun is at zenith, the flux density when
the Sun is at the elevation a is

§' = Sosina k'/s"4,
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The total energy received during one day is thus

W= / S'dr = / Sosina k'/sina gy,

This cannot be solved in a closed form and nu-
merical methods must be used.

The figure on next page shows the daily re-
ceived energy W [kW h/m?] during a year at lat-
itudes ¢ = 0°, 60°, and 90° without extinction,
and when k£ = 0.8, which is close to the real value.

Example 7.3 (Magnitude of a Planet) The ap-
parent magnitude of Mars during the 1975 op-
position was m| = —1.6 and the distance to the
Sun, r; = 1.55 au. During the 1982 opposition,
the distance was ro = 1.64 au. Calculate the ap-
parent magnitude in the 1982 opposition.

At opposition, the distance of Mars from the
Earth is A =r — 1. The observed flux density de-
pends on the distances to the Earth and the Sun,

1

Foc e

Using the magnitude formula (4.9) we obtain

r3(ry — 1)?

ra(ra — 1)
ri(rp —1)
1.64 x 0.64
1.55 x 0.55

—my=-25Ig

= mp=m1+5Ig

=—-1.6+5Ig ~—1.1.
The same result is obtained if (7.38) is separately
written for both oppositions.

Example 7.4 (The Brightness of Venus) Find
the instant when Venus is brightest if the bright-
ness is proportional to the projected size of the
illuminated surface. The orbits are assumed to be
circular.

The size of the illuminated surface is the area
of the semicircle AC E+ half the area of the el-
lipse ABCD. The semiaxes of the ellipse are
R and Rcosa. If the radius of the planet is R,
the illuminated area is

RZ

Jl_+—7lR RC() C(——R (1+C() C(),
X S S

where « is the phase angle. The flux density is
inversely proportional to the square of the dis-
tance A. Thus

1+ cosa
AZ

llluminated surface
seen by the observer Ave

Earth

The cosine formula yields
Mé =r2+ A? —2Arcosa.

When cos « is solved and inserted in the flux den-
sity we obtain

2AF + 12 4+ A2
2r A3

— M2
x D

The minimum of the equation yields the distance
where Venus is brightest:

OF  4rA+3r2-3M3+ A%
AN 2r A N

= A=-2r+,/r2+3M2.

If r =0.723 au and Rg = 1 au, the distance is
A = 0.43 au and the corresponding phase angle
isa=118°.
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Thus Venus is brightest shortly after the largest
eastern elongation and before the largest western
elongation. From the sine formula we obtain

sing  sina
r B M 23} ’
The corresponding elongation is ¢ = 40°, and

I
LS 100 % =27 %

of the surface is seen lit.

Example 7.5 (Magnitude of an Asteroid) The
parameters of the asteroid 44 Nysa are H =
6.929, G; = 0.050, G, = 0.67 and the semima-
jor axis of the orbit @ = 2.42 au. Find V (1, 1°).
What is the apparent magnitude at phase angles
0° and 1°?

Values of the basis functions are @;(1°) =
0.9667, @,(1°) = 0.9900, ®3(1°) = 0.577. Us-
ing these we get the absolute magnitude at the
phase angle 1°:

V(1,1°)=6.929 —2.5 lg[0.0SO x 0.9667

+0.67 x 0.990
+ (1 —0.050 — 0.67) x 0.577]
=17.076. (7.52)

Near the opposition we can approximate A =
r — 1 =1.42 au. The apparent magnitude at the
opposition is then

m=6.929 + 51g(1.42 x 2.42) — 2.51g®(0°)
=6.929 + 51g3.36 = 9.561. (7.53)

When the phase angle is 1° the absolute magni-
tude is 0.147 greater than at the opposition. The
apparent magnitudes differ by the same amount;
hence m(e = 1°) =9.71.

Example 7.6 Find the distance of a comet from
the Sun when its temperature reaches 0 °C and
100 °C. Assume the Bond albedo of the comet
is 0.05.

Solve r from (7.47):

To\2 /1 — A\
r=(=2) (—=) Ro.
T 2

If T =273 K, we the distance is ¥ = 1.4 au; when
T =373K, we getr =0.8 au.

7.14 Exercises

Exercise 7.1 What is the greatest possible elon-
gation of Mercury, Venus and Mars? How long
before sunrise or after sunset is the planet visible?
Assume that the declination of the planet and the
Sun is § =0°.

Exercise 7.2 (a) What is the greatest possible
geocentric latitude of Venus, i.e. how far from the
Sun can the planet be at the inferior conjunction?
Assume the orbits are circular.

(b) When is the situation possible? The longi-
tude of the ascending node of Venus is 77°.

Exercise 7.3 (a) Find the daily retrograde appar-
ent motion of an exterior planet at its opposition.
Assume that the planet and the Earth have circu-
lar orbits.

(b) Pluto was found in 1930 from two plates,
exposed 6 days apart during the opposition of the
planet. On those plates one degree corresponded
to 3 cm. How much (in cm) had Pluto moved be-
tween the exposures? How much does a typical
main belt asteroid move in the same time?

Exercise 7.4 A planet is observed at the oppo-
sition or inferior conjunction. Due to the finite
speed of light the apparent direction of the planet
differs from the true place. Find this difference as
a function of the radius of the orbit. You can as-
sume the orbits are circular. Which planet has the
largest deviation?

Exercise 7.5 The angular diameter of the Moon
is 0.5°. The full moon has an apparent magnitude
of —12.5 and the Sun —26.7. Find the geomet-
ric and Bond albedos of the Moon, assuming that
the reflected light is isotropic (into a solid angle
27 sterad).

Exercise 7.6 The eccentricity of the orbit of
Mercury is 0.206. How much does the apparent
magnitude of the Sun vary as seen from Mercury?
How does the surface brightness of the Sun vary?
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Exercise 7.7 An asteroid with a diameter of
100 m approaches the Earth at a velocity of
30 kms~!. Find the apparent magnitude of the
asteroid (a) one week, (b) one day before the col-
lision. Assume that the phase angle is @ = 0° and
the geometric albedo of the asteroid is p = 0.1.

What do you think about the chances of finding
the asteroid well in advance the crash?

Exercise 7.8 Find the centripetal acceleration at
the poles and on the equator of the Earth.



Objects of the Solar System

Our solar system contains eights planets orbit-
ing the Sun, dwarf planets, asteroids, comets and
meteors, as well satellites orbiting planets and
smaller ring particles. In this chapter the proper-
ties of these different object are discussed.

8.1 Mercury

Mercury is the innermost planet of the solar sys-
tem. Its diameter is 4800 km. Mercury is always
found in the vicinity of the Sun; its maximum
elongation is only 28°. Observations are diffi-
cult because Mercury is always seen in a bright
sky and close to the horizon. Mercury has phases
like the Moon. When it is closest to the Earth
in the inferior conjunction, the dark side of the
planet is toward us. And when the whole illumi-
nated hemisphere is towards the Earth Mercury
is behind the Sun and farthest from us. A couple
of times in a century Mercury transits the solar
disk (Sect. 7.5). Observations during transits have
shown that Mercury does not have an appreciable
atmosphere.

The first maps of Mercury were drawn at the
end of the 19th century but the reality of the de-
tails was not confirmed. As late as in the begin-
ning of the 1960’s, it was believed that Mercury
always turns the same side toward the Sun. How-
ever, measurements of the thermal radio emission
showed that the temperature of the night side is
too high, about 100 K, instead of almost absolute
zero. Finally, the rotation period was established
by radar.

© Springer-Verlag Berlin Heidelberg 2017

Fig.8.1 Length of day in Mercury. The positions of Mer-
cury during the first revolution are shown outside the el-
lipse. Upon returning to the aphelion, the planet has turned
540° (1 % revolutions). After two full cycles the planet has
rotated three times around its axis and the same side points
toward the Sun. The length of the day is 176 d, longer than
on any other planet

One revolution around the Sun takes 88 days.
The rotation period is two-thirds of this, 59 days.
This means that every second time the planet is
in, say, perihelion, the same hemisphere faces the
Sun (Fig. 8.1). This kind of spin—orbit coupling
can result from tidal forces exerted by a central
body on an object moving in a fairly eccentric or-
bit.

Re-examination of old observations revealed
why Mercury had been presumed to rotate syn-
chronously. Owing to its geometry, Mercury is
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Fig. 8.2 Mercury imaged by the Messenger probe. The
centre of the upper mosaic image is at the intersection
of the equator and meridian of the planet. The ray crater
Debussy is near the lower edge. The mosaic image on
the opposing page shows the opposite hemisphere. The
circled area is the over 1500 km wide Caloris basin.
Below it a more easily distinguished 225 km wide cir-
cular depression is the Mozart basin. (NASA/Johns Hop-

easiest to observe in spring and autumn. In six
months, Mercury orbits twice around the Sun, ro-
tating exactly three times around its own axis.
Consequently, during observations, the same side
was always facing the Sun! The details visible on
the surface are very obscure and the few excep-
tional observations were interpreted as observa-
tional errors.

Since the rotation period of Mercury is 7, =
58.6 d ans the orbital period P = 87.97 d, (2.43)
shows that the length of day is Tt = 176 d, or two
Mercury’s years. The rotation axis is almost per-
pendicular to the orbital plane.

The mean distance from the Sun is 0.39 au.
The eccentricity of the orbit is 0.21, which means

kins University Applied Physics Laboratory/Carnegie In-
stitution of Washington). Below: A detail of the surface
photographed by Mariner 10 during it’s first encounter
with Mercury in 1974. The scarp is about 350 kilome-
tres long and transects two craters 35 and 55 kilometres
in diameter. It is up to 2 km high in some places and it ap-
pears to be a fault produced by compression of the crust.
(NASA/JPL/Northwestern University)

that the distance varies between 0.31 and 0.47 au.
Because of the high eccentricity, the surface tem-
perature of the subsolar point varies substantially:
at the perihelion, the temperature is about 700 K;
at the aphelion, it is 100 K lower. Temperature
variations on Mercury are the most extreme in the
solar system because in the night side the temper-
ature drops below 100 K.

The precession of the perihelion of Mercury
is more than 0.15° per century. When the New-
tonian perturbations are subtracted, there remains
an excess of 43”. This is fully explained by the
general theory of relativity. The explanation of
the perihelion precession was one of the first tests
of the general theory of relativity.
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The first spacecraft studying Mercury was the
US Mariner 10 that passed Mercury three times
in 1974 and 1975. The orbital period of Mariner
10 around the Sun was exactly twice the period
of Mercury. The two-thirds-factor meant that the
same side of the planet was illuminated during
every fly-by! The other side remained unknown.
It was only in 2004 that the Messenger (MErcury
Surface, Space ENvironment, GEochemistry, and
Ranging) mapped the whole surface of Mercury,
first on three fly-bys in 2008-2009 and from an
orbit around Mercury in 2011-2015. The next
probe will be the BepiColombo built by the Eu-
ropean Space Agency ESA. The launch is sched-
uled for 2017, and after several fly-bys it should
settle on an orbit around Mercury in 2024.

Since Mercury has no satellites, precise values
of its mass and density could be calculated only
after Mariner’s flight.

The Mariner 10 data revealed a moon-like
landscape. Mercury’s surface is covered by im-
pact craters (Fig. 8.2), indicating that the surface
is old and undisturbed by continental drift or vol-
canic eruptions. There are some signs of volcanic
activity, but they are very old, possibly over a bil-
lion years.

There are also some circular formations re-
sembling lunar maria, formed by impacts of
larger object and filled by lava seeping from the
interior of the planet. The largest circular area is
the 1500 km wide Caloris Basin. The shock wave
produced by the Caloris impact was focused to
the antipodal point, breaking the crust into com-
plex blocks in a large area, the diameter of which
is hundreds of kilometers. This region is named
the Weird Terrain.

There are also faults that were possibly pro-
duced by compression of the crust. The volume
change probably was due to the cooling of the
planet.

Mercury’s relatively small size and proxim-
ity to the Sun, resulting in low gravity and high
temperature, are the reasons for its lack of atmo-
sphere. There is a layer made up of atoms blasted
off the surface by the solar wind. The tenuous “at-
mosphere” is composed mainly of oxygen, nitro-
gen, and helium. The atoms quickly escape into
space and are constantly replenished.

Due to the absence of an atmosphere, the tem-
perature on Mercury drops very rapidly after sun-
set. The rotational axis is almost perpendicular
to the orbital plane; therefore it is possible that,
close to the poles, there are areas where the tem-
perature is permanently below the freezing point.
Radar echos from the surface of Mercury show
several anomalously reflective and highly depo-
larised features at the north and south poles.
Some of these areas can be addressed to the
craters, the bottoms of which are permanently in
shadow. One candidate of the radar-bright fea-
tures is water ice that has survived in the perma-
nent shadow.

Existence of ice was confirmed by the Mes-
senger probe. At the bottoms of some craters the
temperature never exceeds 100 K. The ice is cov-
ered by regolith that prevents the ice from subli-
mating and evaporating to space. It has been esti-
mated that the total amount of ice could be even
1/1000 of the ice in the Antarctic.

It has been said that Mercury looks like the
Moon from the outside but is terrestrial from the
inside. According to theoretical models, the in-
ternal structure is similar to that of the Earth but
the core is substantially larger. The density of the
planet is about the same as that of the Earth, in-
dicating that the size of the Fe—Ni core is roughly
about 75 % of the planet’s radius. The thickness
of the mantle is only 500-700 km and that of the
crust 100-300 km.

Due to the vicinity of the Sun, the temperature
of the primeval nebula at the distance of Mercury
was quite high during planetary formation. Thus
the relative abundances of the volatile elements
are smaller than on any other terrestrial planet.

The Sun creates strong tides on Mercury, with
main periods of 44 and 88 days. Measuring the
tidal variation is difficult due to its slowness, but
it has bee calculated that the vertical motion near
the equator could be a couple of meters. (The
crust of the Earth moves about 30 cm due to the
lunar tides.)

Mercury has a weak magnetic field, about 1 %
as strong as that of the Earth. The presence of
the magnetic field is unexpected because Mer-
cury is much smaller than the Earth and it rotates
slowly. According to the dynamo theory, a mag-
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Fig. 8.3 The phases of Venus were discovered by Galileo Galilei in 1610. This drawing illustrates how the apparent
size of Venus changes with phase. The planet is far behind the Sun when the illuminated side faces the Earth

netic field is generated by flows in a liquid, elec-
trically conducting core. The magnetic field can-
not be a remnant from ancient times, since the
internal temperature of the planet must have ex-
ceeded the critical Curie point. Therefore, it must
be assumed that a part of the core is molten.
Possibly the deformations caused by tides and
the friction releasing heat keep the core molten
and maintain mass flows generating the magnetic
field.

8.2 Venus

Venus is the brightest object in the sky, after the
Sun and the Moon. Like Mercury, Venus can be
seen only in the morning or in the evening sky.
Sometimes it is possible to see Venus even if the
Sun is above the horizon, if its exact position
is known. In antiquity, Venus was thought to be
two different planets, Hesperos and Phosphorus,
evening star and morning star.

The maximum elongation of Venus is about
47°. Venus is a remarkable object when shining
in the dark sky at its brightest, 35 days before or
after the inferior conjunction, when one-third of
the surface is seen lit (Fig. 8.3).

At the inferior conjunction, the Earth—Venus
distance is only 42 million km. The diameter
of Venus is about 12,000 km, which means that
the apparent diameter can be as large as one arc
minute. Under favourable conditions it is even
possible to see the shape of the crescent Venus
with binoculars. At the superior conjunction, the
apparent diameter is only 10 arc seconds.

Venus is covered by clouds. Its surface is
nowhere visible; only featureless yellowish cloud
tops can be seen (Fig. 8.4). Therefore, even the
rotation period was long unknown.

The chemical composition of the Venusian
atmosphere was known prior to the space age.
Spectroscopic observations revealed CO;, but no
oxygen. About 98 % of the atmosphere is car-
bon dioxide. Some clues about the cloud compo-
sition were obtained from polarimetric observa-
tions. The famous French planetary astronomer
Bernard Lyot made polarimetric observations in
the 1920’s, but not until decades later was it re-
alised that his observations could be explained by
assuming that light was scattered by liquid spher-
ical particles whose index of refraction is 1.44.
This is significantly higher than the index of re-
fraction of water, 1.33. Moreover, water is not
liquid at that temperature. A good candidate was
sulphuric acid HSOg4. Later, spacecraft con-
firmed this interpretation.

In 1962, radar measurements revealed that the
rotation period is 243 days in a retrograde direc-
tion, i.e. opposite to the rotation of other planets.
The axis of rotation is almost perpendicular to the
orbital plane; the inclination is 177°. The reason
for the strange rotation is not known.

The temperature at the cloud tops is about
250 K. Because the Bond albedo is as high
as 75 %, the surface temperature was believed
to be moderate, even suitable for life. Opinions
changed dramatically when thermal radio emis-
sion was measured at the end of the 1950’s. This
emission originates on the surface of the planet
and can penetrate the clouds. The surface tem-
perature turned out to be 750 K, well above the
melting point of lead. The reason for this is the
greenhouse effect. The outgoing infrared radia-
tion is blocked by atmospheric carbon dioxide.
The pressure of the atmosphere at the surface is
90 atm.
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Fig.8.4 Left: Venus in visible light imaged by the Galileo
orbiter in February 1990. The cloud features are caused
by winds that blow from east to west at about 100 m/s.
Right: The northern hemisphere of Venus in a computer-

Mariner 2 (1962) was the first spacecraft to
encounter the planet. Five years later, the Soviet
Venera 4 sent the first data from below the clouds,
and the first pictures of the surface were sent by
Venera 9 and 10 in 1975. The first radar map was
completed in 1980, after 18 months of mapping
by the US Pioneer Venus 1. The best and the
most complete maps (about 98 % of the planet’s
surface) were made using the synthetic aperture
radar observations of the Magellan spacecraft in
1990-1994. The resolution of the maps is as high
as 100 m and the elevation was measured with
a resolution of 30 metres. The Venus Express
launched by ESA studied Venus from an orbit
during 2006-2014.

Radar mappings revealed canyons, mountains,
craters, volcanoes and other volcanic formations
(Fig. 8.5). The surface of Venus is covered by
about 20 % of lowland plains, 70 % of gently
rolling uplands and lava flows, and 10 % of high-
lands.

There are only few major highland areas.
The largest continent, Aphrodite Terra, is close
to the equator of Venus; its size is similar to
South America. Another large continent at the
latitude 70°N is called Ishtar Terra, where the

generated picture of the radar observations. The north pole
is at the centre of the image of the Magellan synthetic
aperture radar mosaic. (NASA/JPL)

highest mountain on Venus, the 12 km high
Maxwell Montes is situated. (IAU has decided
that the Venusian nomenclature has to be femi-
nine. Maxwell Montes, after the famous physicist
James Clerk Maxwell, is an exception.)

On Venus there are volcanic features all over
the surface. There is no evidence of massive tec-
tonic movement although local deformations can
exist. Small volcanoes are evenly distributed but
big ones are concentrated mainly on highlands.
The origin of the latter may resemble that of the
Hawaiian volcanoes: the volcanoes are located
above a “hot spot” of the mantle. in a place where
currents of the mantle move hot magma towards
the surface.

Venus has more volcanoes than any other
planet in the solar system. Over 1500 major vol-
canoes or volcanic features are known, and there
may even be one million smaller ones. Most are
shield volcanoes, but there are also many com-
plex features. None are known to be active at
present, although large variations of sulphur diox-
ide in the atmosphere may indicate that some vol-
canoes are active.

Almost all volcanism on Venus seems to in-
volve fluid lava flows without any explosive erup-
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Fig. 8.5 Surface features of Venus. (Top left): A Magel-
lan image of a 50 km peak-ring crater Barton at 27.4°N
and 337.5°E. (Top right): A Magellan radar image of a re-
gion 300 km across, located in a vast plain to the south
of Aphrodite Terra. The large circular structure near the
centre of the image is a corona, approximately 200 km in

tions. Due to the high air pressure, Venusian lavas
need a much higher gas content than the Earth
lavas to erupt explosively. The main gas driv-
ing lava explosions on the Earth is water vapour,
which does not exist on Venus.

Flat-topped volcanic constructs known as pan-
cake domes are probably formed by the eruption
of an extremely viscous lava. A corona is a cir-
cular trench surrounding an elevated plain, the
diameter of which can be as big as several hun-
dreds of kilometres. They are possibly examples
of local hot spots, mantle upwellings that have
expanded and formed bulges. When the flow has
stopped, the bulge has sunk and formed a set of
ring mountains.

In other places fluid lava flows have produced
long, sinuous channels extending for hundreds of
kilometres.

Venus has no large scale tectonic activity. The
reason may be the thinner and weaker crust and

diameter. North of the corona is a 35 km flat-topped vol-
canic construct known as a pancake dome. Complex frac-
ture patterns like in the upper right of the image are often
observed in association with coronas and various volcanic
features. (NASA/JPL). (Bottom): The surface of Venus
photographed by the Venera 14 lander in March 1982

lack of water; therefore there are no large subduc-
tion zones between continents. Instead, the crust
can consist of local zones only. Since the inter-
nal heat cannot flow out like on the Earth, the
crust will warm up until at a critical temperature
it will collapse and be renewed in hundred mil-
lion years. The last time this happened was about
500 million years ago.

Most of the Venusian impact craters are un-
deformed. This indicates that the Venusian sur-
face must be young because erosion, volcan-
ism and tectonic forces should affect the craters,
too. Resurfacing processes may frequently cover
the old craters, and all craters visible are there-
fore young, presumably less than 500 million
years. There are no impact crates smaller than
a few kilometers because smaller meteoroids are
burned in the thick atmosphere.

The Earth and Venus are almost equal in size,
and their interiors are assumed to be similar.
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Venus has an iron core about 3000 km in radius
and a molten rocky mantle covering the majority
of the planet. Probably due to its slow rotation,
however, Venus has no magnetic field. The anal-
yses made by the Venera landers have shown that
the surface material of Venus is similar to terres-
trial granite and basalt.

About 1 % of the incident light reaches the
surface of Venus; this light is deep red after trav-
elling through clouds and the thick atmosphere.
Most of the incident light, about 75 %, is reflected
back from the upper layers of clouds. The ab-
sorbed light is emitted back in infrared. The car-
bon dioxide atmosphere very effectively prevents
the infrared radiation from escaping, and the tem-
perature had not reached the equilibrium until at
750 K.

In spite of the thick layer of clouds, the visibil-
ity on the surface is several kilometres, and even
in the clouds, a few hundred metres. Therefore,
the clouds are relatively transparent. The densest
clouds are at a height of 50 km, but their thick-
ness is only 2-3 km. Above this, there are haze-
like layers which form the visible “surface” of the
planet. The uppermost clouds move rapidly; they
rotate around the planet in about 4 days, pushed
by strong winds powered by the Sun. The flow
patterns of the clouds are best visible in ultravio-
let light. The sulphuric acid droplets do not rain
on the Venusian surface but they evaporate in the
lower atmosphere before reaching the surface.

Venus’ atmosphere is very dry: the amount of
water vapour present is only 1/1,000,000 of that
in the Earth’s atmosphere. One possible explana-
tion is that, due to solar UV radiation, the water
has dissociated to hydrogen and oxygen in the up-
per layers of the atmosphere, the former escaping
into interplanetary space.

Venus has no satellites.

8.3 The Earth and the Moon

The third planet from the Sun, the Earth, and its
satellite, the Moon, form almost a double planet.
The relative size of the Moon is larger than that
of any other satellite, excluding the moon of the
dwarf planet Pluto. Usually satellites are much
smaller than their parent planets.
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Fig. 8.6 Internal structure of the Earth. The speed of
the seismic waves, density, pressure, and temperature are
shown as a function of depth. The crust, lithosphere, lower
mantle and inner core are solid, the outer mantle is molten
and the asthenosphere is partly molten

The Earth is a unique body, since a consid-
erable amount of free water is found on its sur-
face. This is possible only because the temper-
ature is above the freezing point and below the
boiling point of water and the atmosphere is thick
enough. The Earth is also the only planet where
life is known to exist. (Whether it is intelligent or
not is yet to be resolved...). The moderate tem-
perature and the water are essential for terrestrial
life, although some life forms can be found in ex-
treme conditions.

The diameter of the Earth is 12,000 km. At the
centre, there is an iron—nickel core where the tem-
perature is 5000 K, the pressure 3 x 101! Nm~2
and the density 12,000 kg m~3 (Fig. 8.6).

The core is divided into two layers, inner and
outer core. The inner core, below 5150 km com-
prises only of 1.7 % of the mass of the Earth. It is
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solid because of high pressure. The nonexistence
of the seismic transverse S waves below a depth
of 2890 km indicates that the outer core is molten.
However, the speed of the longitudinal P waves
change rapidly at a depth of 5150 km showing an
obvious phase transition. It has been discovered
that the solid inner core rotates with respect to
the outer core and mantle.

The outer core comprises about 31 % of the
mass of the Earth. It is a hot, electrically conduct-
ing layer of liquid Fe—Ni where the convective
motions take place. There are strong currents in
the conductive layer that are responsible for the
magnetic field.

Between the outer core and the lower mantle
there is a 200 km thick transition layer. Although
this D" layer is often included as a part of the
lower mantle, seismic discontinuities suggest that
it might differ chemically from the lower mantle.

A silicate mantle extends from 2890 km up-
ward up to a depth of few tens of kilometres. The
part below 650 km is often identified as the lower
mantle. It contains about 49 % of the mass and
is composed mainly of silicon, magnesium, and
oxygen but some iron, calcium, and aluminium
may also exist. The major minerals are olivine
(Mg,Fe)»Si0O4 and pyroxene (Mg,Fe)SiO3. Un-
der pressure the material behaves like a viscous
liquid or an amorphous medium, resulting in slow
vertical flows.

Between the lower and upper mantle there is
a 250 km thick transition region or mesosphere. It
is the source of basaltic magmas and is rich in cal-
cium and aluminium. The upper mantle, between
some tens of kilometres down to 400 km contains
about 10 % of the mass. Part of the upper man-
tle, called the asthenosphere, might be partially
molten.

A thin crust floats on the mantle. The thick-
ness of the crust is only 10-65 km; it is thick-
est below high mountain ranges such as the
Himalayas and thinnest below the mid-ocean
basins. The seismic discontinuity showing the
border between the crust and mantle was discov-
ered in 1909 by the Croatian scientist Andrija
Mohorovicié, and it is now known as the Moho
discontinuity.

The basaltic oceanic crust is very young,
mostly less than 100 million years and nowhere

more than 200 Ma. It is made through tectonic
activity at the mid-ocean ridges, where new ma-
terial is spreading out.

The continental crust is mainly composed of
crystalline rocks that are dominated by quartz
(S§i03) and feldspars (metal-poor silicates). Be-
cause the continental crust is lighter than the
oceanic crust (average densities are about
2700 kg m 3 and 3000 kg m 3, respectively), the
continents are floating on top of other layers, and
currently they are neither created nor destroyed.

The lithosphere is the rigid outer part of the
Earth (crust and the topmost part of the upper
mantle). Below that is the partially molten as-
thenosphere where the damping of seismic waves
is stronger than in the rigid lithosphere.

The lithosphere is not a single rigid and seam-
less layer; instead it is divided into more than 20
individual plates. The plate tectonics (“continen-
tal drift”) is powered by the motion of the ma-
terial in the mantle (Fig. 8.7). New material is
flowing up at the mid-ocean ridges, pushing the
tectonic plates apart. New oceanic crust is gen-
erated at the rate of 17 km® per year. The Earth
is the only planet that shows any large-scale tec-
tonic activity. The history of the motion can be
studied by using e.g. the paleomagnetic data of
magnetic orientation of crystallised rocks.

At the end of the Precambrian era, about 700
million years ago, more than half of the conti-
nents were together forming the continent known
as Gondwana, containing Africa, South Amer-
ica, Australia and Antarctica. About 350 mil-
lion years ago Gondwana was on the South Pole
but it moved toward the equator before the final
breakup. Mutual collisions formed new moun-
tains and finally in the beginning of the Mesozoic
era, about 200 million years ago, all the conti-
nents were joined into one supercontinent, Pan-
gaea.

Quite soon the flow pattern in the mantle
changed and the Pangaea broke up. The Atlantic
Ocean is still growing and new material is flow-
ing up at the mid-Atlantic ridge. North America
is drifting away from Europe at the rate of a few
centimetres per year (your fingernails are grow-
ing at the same speed). At the same time, parts
of the Pacific oceanic plate are disappearing be-
low other plates. When an oceanic crust is pushed
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Fig.8.7 The tectonic plates. The dots on the map indicate
the location of earthquakes with magnitudes greater than 5
in the years 1980-1989. Arrows show the velocities ob-

below a continental crust, a zone of active volca-
noes is created. The earthquakes in the subduc-
tion zones can even originate 600 km below the
surface. In the mid-ocean ridges, the depth is only
tens of kilometres.

Mountains are formed when two plates col-
lide. The push of the African plate toward the
Eurasian plate formed the Alps about 45 million
years ago. The collision of the Indian plate cre-
ated the Himalayas some 40 million years ago,
and they are still growing. The plates can also
move sideways. Earthquakes in such a fault usu-
ally occur in depths less than about 100 kilome-
tres. An example is the San Andreas fault in Cal-
ifornia.

No other planet has such large scale tectonic
activity. The interiors of Mars and Mercury are
already too cold to maintain convection in their
mantles. The structure of the crust of Venus is too
weak to move large regions. Also, the free water
of the Earth may be important in keeping up the
plate tectonics.

The climate is an efficient factor reshaping the
surface. The mountains created by collisions of
tectonic plates are eroded already in a few hun-
dred million years by temperature changes, rain,
wind and ice. Impact crater disappear even faster,

served with permanent GPS (Global Positioning System)
tracking stations. The velocity scale is shown at lower left

and many of the currently known craters have
been found by local gravitational anomalies in-
stead of geographical features.

Most of the Earth’s surface is covered with wa-
ter. The Earth is the only planet that currently has
free running water. The water condensed from the
water vapour released in volcanic eruptions. De-
pending on glaciation, the sea level ascends or
descends by over 100 metres with respect to the
solid ground. During the last ice age the sea level
was 150 m below the current. Due to the melting
of glaciers the sea level is rising by one millimetre
per year, but the rate is increasing by the green-
house effect.

Compared with the geological time scale the
increase in the greenhouse effect caused by hu-
man activity is a very young phenomenon. Ice
ages have come and gone in periods of a time
scales of 100,000 years. The current warming of
the climate is a temporary phenomenon, which,
however, may have some effect on the beginning
of the next ice age. Although the human activi-
ties have little effect from the geological point of
view, they may have disastrous effects on the cur-
rent biosphere.

The primordial atmosphere of the Earth was
very different from the modern one; there was, for
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Fig. 8.8 Hurricane Elena
in the Gulf of Mexico seen
from the space shuttle
Discovery in September 1,
1985. Wind speeds may
exceed 170 km/h. Compare
this to the Great Red Spot
of Jupiter in Fig. 8.18.
(NOAA)

example, no oxygen. Earlier it was assumed that
the original atmosphere was reducing, but more
recent studies seem to indicate that it was neutral.
When organic chemical processes started in the
oceans more than 2 x 10° years ago and reached
the level of photosynthesis, the amount of oxy-
gen rapidly increased (and was poison to the
first forms of life!). The original carbon dioxide
is now mainly concentrated in carbonate rocks,
such as limestone, and the methane was disso-
ciated by solar UV radiation. The current atmo-
sphere has very little resemblance to the early at-
mosphere a couple of billion years ago.

The Earth’s main atmospheric constituents are
nitrogen (77 % by volume) and oxygen (21 %).
Other gases, such as argon, carbon dioxide, and
water vapour are present in minor amounts. The
chemical composition is unchanged in the lower
part of the atmosphere, called the froposphere.
Most of the climatic phenomena occur in the tro-
posphere, which reaches up to 8—10 km (Fig. 8.8).
The height of the layer is variable, being lowest at
the poles, and highest at the equator, where it can
extend up to 18 km.

The layer above the troposphere is the strato-
sphere, extending up to 60 km. The boundary

between the troposphere and the stratosphere
is called the tropopause. In the troposphere,
the temperature decreases 5—7 K/km, but in the
stratosphere it begins to rise, due to the absorp-
tion of solar radiation by carbon dioxide, wa-
ter vapour and ozone. The ozone layer, which
shields the Earth from the solar UV radiation, is
at a height of 20-25 km.

A total of 99 % of air is in the troposphere
and stratosphere. The stratopause at a height of
50-60 km separates the stratosphere from the
mesosphere.

The mesosphere extends up to 85 km. In this
layer, the temperature decreases again, reaching
the minimum of about —90 °C at the height of
80-90 km in the mesopause. Chemicals in the
mesosphere are mostly in an excited state, as they
absorb energy from the Sun.

Above the mesopause is the thermosphere that
extends up to 500 kilometres. The temperatures
increases with altitude and can be above 1200 °C
at the height of 500 km. The gas is in the form of
a fully ionised plasma. Therefore, the layer above
the mesopause is also called the ionosphere.

The density of air below a height of 150 km
is high enough to cause colliding meteoroids to
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Fig. 8.9 A map of the Lunar surface, composed of im-
ages taken by the Clementine space probe in 1994. Note
the large areas of maria in the Lunar near side, at the centre

burn into ashes due to friction. It also plays an
important role in radio communications, since ra-
dio waves are reflected by the ionosphere. Auro-
ras are phenomena of the upper part of the iono-
sphere.

The thermosphere goes over into the exo-
sphere at about 500 km. There the air pressure is
much lower than in the best laboratory vacuums.

The magnetic field of the Earth is generated by
flows in its core. The field is almost a dipole but
there are considerable local and temporal varia-
tions. The mean field strength close to the equa-
toris 3.1 x 1073 Tesla (0.31 Gauss). The dipole is
tilted 11° with respect to the Earth’s axis, but the
direction gradually changes with time. Currently
the field is decreasing about 30 nT a year and
moving counterclockwise; however, the angle be-
tween the magnetic axis and the rotation axis re-
mains nearly constant. Moreover, the magnetic
north and south poles have exchanged places sev-
eral times during the past, once every 100,000—
1,000,000 years. The last time this happened was
about 780,000 years ago.

The Moon Our nearest neighbour in space is
the Moon (Fig. 8.9). Its motion was described in
Sect. 7.4. Dark and light areas are visible even

of the figure, as compared to the almost complete absence
of the maria at the Lunar far side. (US Naval Observatory)

with the naked eye. For historical reasons, the for-
mer are called seas or maria (from Latin, mare,
sea, pl. maria). The lighter areas are uplands but
the maria have nothing in common with terres-
trial seas, since there is no water on the Moon.
Numerous craters, all meteorite impacts, can be
seen, even with binoculars or a small telescope.
The lack of atmosphere, volcanism, and tectonic
activity help to preserve these formations.

The Moon is the best-known body after the
Earth. The first man landed on the Moon in
1969 during the Apollo 11 flight. A total of over
2000 samples, weighing 382 kg, were collected
during the six Apollo flights (Fig. 8.10). More-
over, the unmanned Soviet Luna spacecraft col-
lected and returned about 310 grams of Lunar
soil. Instruments placed on the Moon by the
Apollo astronauts operated as long as eight years.
These included seismometers, which detected
moonquakes and meteorite impacts, and passive
laser reflectors which made exact Earth-Moon
distance measurements possible. The reflectors
are still used for Lunar laser ranging (LLR) mea-
surements.

Seismometric and gravimetric measurements
have supplied basic information on the internal
structure of the Moon. Moonquakes take place
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Fig. 8.10 Apollo 17
astronaut Harrison Schmitt
on the Moon in 1972.
(NASA)

at a depth of 800—1000 km, considerably deeper
than earthquakes, and they are also much weaker
than on the Earth. Most of the quakes occur at
the boundary of the solid mantle, the lithosphere,
and the asthenosphere (Fig. 8.11). The transver-
sal S waves cannot penetrate the asthenosphere,
indicating that it is at least partially molten. Tidal
forces may generate at least some of the moon-
quakes because most of them occur close to
perigee or apogee.

Lunar orbiters have observed local mass con-
centrations, mascons, beneath the maria. These
are large basaltic blocks, formed after the huge
impacts which produced the maria. The craters
were filled by lava flows during the next billion
years or so in several phases. This can be seen,
e.g. in the area of Mare Imbrium. Large maria
were formed about 4 x 10° years ago when mete-
orite bombardment was much heavier than today.
The last 3 x 10° years have been quite peaceful,
without any major events.

The centre of mass is not at the geometric cen-
tre of the Moon but about 2.5 km away due to
the 20-30 km thick basaltic plates below the large
maria. Moreover, the thickness of the crust varies,
being the thickest at the far side of the Moon,

Mantle
(Lithosphere)

Asthenosphere

Earth «+———

Fig. 8.11 Structure of the Moon. The height differences
of the surface are strongly exaggerated

about 100 km. On the near side the thickness of
the crust is about 60 km.

The mean density of the Moon is 3400 kg m 3,
which is comparable to that of basaltic lavas on
the Earth. The Moon is covered with a layer of
soil with scattered rocks, regolith. It consists of
the debris blasted out by meteorite impacts. The
original surface is nowhere visible. The thickness
of the regolith is estimated to be at least tens of
metres. A special type of rock, breccia, which
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is a fragment of different rocks compacted and
welded together by meteor impacts, is found ev-
erywhere on the Moon.

The maria are mostly composed of dark ba-
salts, which form from rapid cooling of massive
lava flows. The highlands are largely composed
of anorthosite, an igneous rock that forms when
lava cools more slowly than in the case of basalts.
This implies that the rocks of the maria and high-
lands cooled at different rates from the molten
state and were formed under different conditions.

Data returned by the Lunar Prospector and
Clementine spacecraft indicated that water ice is
present at both the north and south lunar poles.
Data indicates that there may be nearly pure wa-
ter ice buried beneath the dry regolith. The ice is
concentrated at the bottoms of deep valleys and
craters that are in a permanent shadow where the
temperature is below 100 K.

The Moon has no global magnetic field. Some
of the rocks have remanent magnetism indicat-
ing a possible global magnetic field early in
the Moon’s history. Without the atmosphere and
magnetic field, the solar wind can reach the
Moon’s surface directly. The ions from the solar
wind have embedded in the regolith. Thus sam-
ples returned by the Apollo missions proved valu-
able in studies of the solar wind.

The origin of the Moon is still uncertain; it has,
however, not been torn off from the Earth at the
Pacific Ocean, as is sometimes believed. The Pa-
cific is less than 200 million years old and formed
as a result of continental drift. Also, the chemical
composition of the lunar soil is different from that
of terrestrial material.

Recently it was suggested that the Moon was
formed in the early stages of the formation of the
Earth, when a lot of protoplanet embryos were
orbiting the Sun. An off-axis collision of a Mars-
size body resulted in ejection of a large amount
of debris, a part of which then accreted to form
the Moon. Differences in chemical compositions
of the modern Earth and the Moon can be ex-
plained with the theory, as well as the orientation
and evolution of the Moon’s orbit and the Earth’s
relatively fast spin rate.

Box 8.1 (Atmospheric Phenomena) The best-
known atmospheric phenomenon is the rain-
bow, which is due to the refraction of light
from water droplets. The radius of the arc of
the rainbow is about 41° and the width, 1.7°.
The centre of the arc is opposite the Sun (or
any other source of light). When the light is re-
fracted inside a water droplet, it is divided into
a spectrum, where the red colour is at the outer
edge and blue, at the inner edge. Light can be
reflected twice inside the droplet, resulting in
a secondary rainbow outside the primary one.
The colours of the secondary rainbow are in re-
versed order and its radius is 52°. A rainbow
caused by the Moon is usually very weak and
colourless, since the human eye is incapable of
resolving colours of a dim object.

A halo results when the solar or lunar light
is reflected from atmospheric ice crystals. The
most common halo is a 22° arc or circle around
the Sun or the Moon. Usually the halo is white,
but occasionally even bright colours can be
seen. Another common form is the side lobes
which are at the same height as the Sun but
at a distance of 22° from it. All other forms
of halo are less common. The best “weather”
for halos is when there are cirrostratus or cirrus
clouds or an icy fog in the sky.

Noctilucent clouds are thin formations of
cloud, at a height of approximately 80 km. The
clouds contain particles, which are less than
one micron in diameter, and become visible
only when the Sun (which is below the hori-
zon) illuminates the clouds. Most favourable
conditions are at the northern latitudes during
the summer nights when the Sun is only a few
degrees below the horizon.

The night sky is never absolutely dark. One
reason (in addition to light pollution) is the air-
glow or light emitted by excited atmospheric
molecules. Most of the radiation is in the in-
frared domain, but e.g. the forbidden line of
oxygen at 558 nm, has also been detected.

The same greenish oxygen line is clearly
seen in auroras, which are formed at a height
of 80-300 km. Auroras can be seen mainly
from relatively high northern or southern lati-
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Top: Halos are particularly common in Antarctic (photo Marko Riikonen).
Bottom: Auroras (photo Pekka Parviainen)

tudes because the Earth’s magnetic field forces
charged particles, coming from the Sun, close
toward the magnetic poles. Alaska and north-
ern Scandinavia are the best places to observe
auroras. Occasionally, auroras can be seen as
far south as 40°. They are usually greenish or
yellow-green, but red auroras have been ob-
served, too. They most commonly appear as
arcs, which are often dim and motionless, or as
belts, which are more active and may contain
rapidly varying vertical rays.

Meteors (also called shooting stars although
they have nothing to do with stars) are small
grains of sand, a few micrograms or grams in
weight, which hit the Earth’s atmosphere. Due
to friction, the body heats up and starts to glow
at a height of 100 km. Some 2040 km lower,
the whole grain has burnt to ashes. The dura-
tion of a typical meteor is less than a second.
The brightest meteors are called bolides (mag-
nitude smaller than about —2). Even larger par-
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June 10, 2001

Fig. 8.12 Two pictures of Mars, taken by the Mars
Global Surveyor in June and July 2001. The view from
June (left) shows the Tharsis volcanic region, Valles
Marineris and the late winter south polar cap. The view

ticles may survive down to the Earth. Meteors
are further discussed in Sect. 8.13.

8.4 Mars

Mars is the outermost of the terrestrial planets.
Its diameter is only half of that of the Earth. Seen
through a telescope, Mars seems to be a reddish
disk with dark spots and white polar caps. The po-
lar caps wax and wane with the Martian seasons,
indicating that they are composed of ice. Darker
areas were suspected to be vegetation. At the end
of the 19th century, an Italian astronomer, Gio-
vanni Schiaparelli claimed that there are canals
on Mars.

In the United States, the famous planetary
astronomer Percival Lowell studied the canals
and even published books on the topic. Martians
were also very popular in science fiction litera-
ture. Now the canals are known to be nonexis-
tent, an optical illusion when the obscure details
at the limit of visibility seem to form straight
lines, canals. Finally, the first clear pictures by
Mariner 4 in 1965 buried even the most optimistic
hopes concerning life on Mars. Later spacecraft
revealed more details of the planet.

July 31, 2001

from July shows the same regions, but most of the details
are hidden by dust storms and haze. (NASA/JPL/Malin
Space Science Systems)

Mars is a superior planet, which means that it
is most easily observable when it is closest to the
Earth, i.e. during opposition, when the planet is
above the horizon all night long.

The rotation axis of Mars is tilted 25° to the
ecliptic, about the same amount as the Earth’s
axis. A Martian day is only half an hour longer
than a terrestrial day. Mars’ orbit is significantly
elliptical, resulting in temperature variations of
about 30 °C at the subsolar point between the
aphelion and perihelion. This has a major influ-
ence on the climate. Huge dust storms are oc-
casionally seen on Mars (Fig. 8.12). Usually the
storms begin when Mars is at the perihelion.
Heating of the surface gives rise to large temper-
ature differences that in turn cause strong winds.
The wind-driven dust absorbs more heat and fi-
nally the whole planet is covered by a dust storm
where the wind speeds exceed 100 m/s.

The atmosphere of Mars is mainly composed
of carbon dioxide (95 %). It contains only 2 % ni-
trogen and 0.1-0.4 % oxygen. The atmosphere
is very dry: if all the moisture were condensed
on the surface, the water layer would be thin-
ner than 0.1 mm. Even the minor amount of wa-
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Fig. 8.13 A topographic shade map of Mars made from
the Mars Global Surveyor data. The most prominent fea-
tures are the large shield volcanoes in the northern hemi-

ter vapour is sufficient to occasionally form some
thin clouds or haze.

The air pressure is only 5-8 mbar. A part of
the atmosphere has escaped but it is probable that
Mars never had a thick atmosphere. The primor-
dial atmosphere of Mars was, however, somewhat
similar to that of the Earth. Almost all of its car-
bon dioxide was used up to form carbonate rocks.
Because there are no plate tectonics on Mars, the
carbon dioxide was not recycled back into the at-
mosphere as on the Earth. Therefore, the green-
house effect on Mars is significantly smaller than
on the Earth.

Craters were already found in the first pictures.
The southern hemisphere is especially marked by
craters, indicating that the original surface is still
visible there. The largest impacts, Hellas and Ar-
gyre are about 2000 km in diameter. On the other
hand, the northern hemisphere has an abundance
of large lava basins and volcanoes (Fig. 8.15).
The surface is younger than in the southern hemi-
sphere. The largest volcano, Olympus Mons, pro-
trudes more than 20 km above the surround-
ing terrain. The diameter at the bottom is about
600 km.

There are no active volcanoes on Mars. The
mare-like plains on Mars are of the same age as

sphere and the Valles Marineris canyon system that is
more than 3000 km long and up to 8 km deep. (MOLA
Science Team/NASA)

the Lunar maria, about 3 x 10° years old. Volcan-
ism in the highland and mare-like plains stopped
at that time, but the giant shield volcanoes are
much younger, possibly 1-2 x 10° years. The
youngest lava flows on Olympus Mons are pos-
sibly less than 100 million years old. Mars shows
no sign of plate tectonics. It has no mountain
chains, nor any global patterns of volcanism.
There are also several canyons, the largest of
which is Valles Marineris (Fig. 8.13). Its length
is 5000 km, width 200 km, and depth about
6 km. Compared with Valles Marineris, the Grand
Canyon is merely a scratch on the surface.
Ancient riverbeds (Fig. 8.15), too small to be
seen from the Earth, were also discovered by
spacecraft. Rivers were probably formed soon af-
ter the formation of Mars itself, when there was
a great deal of water and the atmospheric pres-
sure and temperature were higher. At present, the
temperature and air pressure on Mars are too low
for free water to exist, although there have been
speculations on warm weather cycles in the more
recent history of the planet. The mean temper-
ature is now below —50 °C and, on a warm
summer day, the temperature can rise close to
zero near the equator. Most of the water is con-
tained in kilometres deep permafrost below the



198

8 Objects of the Solar System

Fig. 8.14 The panorama taken by the Opportunity rover shows structures resembling terrestrial sediments that could

have been caused by water. (NASA/JPL/Caltech)

Fig. 8.15 Volcanoes, impact craters and rivers. (a) Mars
Global Surveyor wide-angle view of Olympus Mons in
April 1998. (b) Small impact craters and sand dunes with
aresolution of 1.5 m per pixel. The picture covers a 1.5 km
wide portion of Isidis Planitia. (¢) Three major valley sys-
tems east of the Hellas plains. These valleys have probably

surface and in the polar caps. The theory was con-
firmed in 2002, when the Mars Odyssey space-
craft detected a large supply of subsurface wa-
ter ice of a wide area near the south pole. The
ice is mixed into the soil a meter below the sur-
face. Two rovers, Spirit and Opportunity, oper-
ating on the Mars discovered in 2004 minerals
like hematite and goethite which proved the ex-
istence of liquid water on the surface of Mars.
The period when the liquid water existed is un-
known.

The polar caps are composed both of water
and carbon dioxide ice. The northern cap is al-

been formed by large outbursts of liquid water but the age
of the valleys is unknown. The valleys are all roughly 1 km
deep and 10-40 km wide. The picture covers an area ap-
proximately 800 km across. (Mars Global Surveyor, 2000)
(NASA/JPL/Malin Space Science Systems)

most season-independent, extending down to lati-
tude 70°. On the other hand, the southern cap,
which reaches to the latitude —60° in the south-
ern winter, disappears almost totally during the
summer. The southern cap consists mostly of
CO3, ice. The permanent parts are of ordinary wa-
ter ice, since the temperature, —73 °C, is too high
for CO; ice. The water ice layers can be hundreds
of metres thick.

The dark areas are not vegetation, but loose
dust, moved around by strong winds. These winds
raise the dust high into the atmosphere, colouring
the Martian sky red. The Mars landers have re-
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Fig.8.16 Phobos (left)
and Deimos, the two
moons of Mars. They can
be captured asteroids.
(NASA)

vealed a reddish regolithic surface, scattered with
boulders (Fig. 8.14). The red colour is caused
mainly by iron oxide, rust; already in the 1950’s,
the existence of limonite (2 FeO3 3 H,O) was de-
duced from polarisation measurements. The on-
site analysis showed that the soil consists of
13 % iron and 21 % silicon. The abundance of
sulphur was found to be ten times that found on
the Earth.

The interior of Mars is not well known.
Mars has probably a dense core approximately
1500 km in radius, a molten rocky mantle which
is denser than the Earth’s mantle and a thin crust.
The crust is 80 km thick in the southern hemi-
sphere but only about 35 km thick in the northern
one. The low mean density compared with other
terrestrial planets may indicate that in addition to
iron the core contains a relatively large fraction
of sulphur.

The Mars Global Surveyor confirmed in 1997
a weak magnetic field. It is probably a remnant of
an earlier global field that has since disappeared.
This has important implications for the structure
of Mars’ interior. There are no electric currents
creating a magnetic field and therefore the core
may be (at least partially) solid.

Three biological experiments of the Viking
landers in 1976 searched for signs of life. No or-
ganic compounds were found—however, the bi-
ological tests did give some unexpected results.
A closer look at the results indicated no life, but
some uncommon chemical reactions.

Mars has two moons, Phobos and Deimos
(Fig. 8.16). The size of Phobos is roughly 27 km x
21 km x 19 km, and the orbital period around
Mars is only 7 h 39 min. In the Martian sky, Pho-
bos rises in the west and sets in the east. Deimos
is smaller. Its diameter is 15 km x 12km x 11 km.
The orbital period of Deimos is slightly over 30
hours, or just six hours longer than the rotation
period of Mars. The synodic period of Deimos is
nearly 5.5 days, and so it will stay over 2.5 days
above the Martian horizon.

There are craters on both moons. Polarimetric
and photometric results show that they are com-
posed of material resembling carbonaceous chon-
drite meteorites.

8.5 Jupiter
The realm of terrestrial planets ends at the aster-
oid belt. Outside this, the relative abundance of
volatile elements is higher and the original com-
position of the solar nebula is still preserved in
the giant planets. The first and largest is Jupiter.
Its mass is 2.5 times the total mass of all other
planets, almost 1/1000 of the solar mass. The
bulk of Jupiter is mainly hydrogen and helium.
The relative abundance of these elements are ap-
proximately the same as in the Sun, and the den-
sity is of the same order of magnitude, namely
1330 kgm 3.

During oppositions, the angular diameter of
Jupiter is as large as 50”. The dark belts and
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Fig. 8.17 A composed
image of Jupiter taken by
the Cassini spacecraft in
December 2000. The
resolution is 114 km/pixel.
The dark dot is the shadow
of the moon Europa.
(NASA/JPL/University of
Arizona)

lighter zones are visible even with a small tele-
scope. These are cloud formations, parallel to the
equator (Fig. 8.17). The most famous detail is the
Great Red Spot, a huge cyclone, rotating coun-
terclockwise once every six days. The spot was
discovered by Giovanni Cassini in 1655; it has
survived for centuries, but its true age is unknown
(Fig. 8.18).

The rotation of Jupiter is rapid; one revolu-
tion takes 9 h 55 min 29.7 s. This is the period
determined from the variation of the magnetic
field, and it reflects the speed of Jupiter’s inte-
riors where the magnetic field is born. As might
be expected, Jupiter does not behave like a rigid
body. The rotation period of the clouds is about
five minutes longer in the polar region than at the
equator. Due to its rapid rotation, Jupiter is non-
spherical; flattening is as large as 1/15.

There is possibly an iron-nickel core in the
centre of Jupiter. The mass of the core is proba-
bly equal to a few tens of Earth masses. The core
is surrounded by a layer of metallic liquid hy-
drogen, where the temperature is over 10,000 K

and the pressure, three million atm. Owing to this
huge pressure, the hydrogen is dissociated into
single atoms, a state unknown in ordinary labora-
tory environments. In this exotic state, hydrogen
has many features typical of metals. This layer
is electrically conductive, giving rise to a strong
magnetic field. Closer to the surface where the
pressure is lower, the hydrogen is present as nor-
mal molecular hydrogen, H,. At the top there is
a 1000 km thick atmosphere.

The atmospheric state and composition of
Jupiter has been accurately measured by the
spacecraft. In situ observations were obtained in
1995, when the probe of the Galileo spacecraft
was dropped into Jupiter’s atmosphere. It sur-
vived nearly an hour before crushing under the
pressure, collecting the first direct measurements
of Jupiter’s atmosphere.

Belts and zones are stable cloud formations.
Their width and colour may vary with time, but
the semi-regular pattern can be seen up to the lat-
itude 50°. The colour of the polar areas is close to
that of the belts. The belts are reddish or brown-
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Fig.8.18 Jupiter’s Great
Red Spot and its
surroundings with several
smaller ovals as seen by
Voyager 1 in 1979. Cloud
details of 160 kilometres
are visible. (NASA)

ish, and the motion of the gas inside a belt is
downward. The gas flows upward in the white
zones. The clouds in the zones are slightly higher
and have a lower temperature than those in the
belts. Strong winds or jet streams blow along the
zones and belts. The speed of the wind reaches
150 m/s at some places in the upper atmosphere.
According to the measurements of the Galileo
probe, the wind speeds in the lower cloud lay-
ers can reach up to 500 m/s. This indicates that
the winds in deeper atmospheric layers are driven
by the outflowing flux of the internal heat, not the
solar heating.

The colour of the Great Red Spot (GRS) re-
sembles the colour of the belts (Fig. 8.18). Some-
times it is almost colourless, but shows no signs
of decrepitude. The GRS is 14,000 km wide and
30,000-40,000 km long. Some smaller red and
white spots can also be observed on Jupiter, but
their lifetime is generally much less than a few
years.

The ratio of helium to hydrogen in the deep
atmosphere is about the same as in the Sun. The

results of the Galileo spacecraft gave consider-
ably higher abundance than previous estimates.
It means that there are no significant differenti-
ation of helium, i.e. helium is not sinking to the
interior of the planet as was expected according
to the earlier results. Other compounds found in
the atmosphere include methane, ethane and am-
monia. The temperature in the cloud tops is about
130 K.

Jupiter radiates twice the amount of heat that
it receives from the Sun. This heat is a remnant
of the energy released in the gravitational con-
traction during the formation of the planet. Thus
Jupiter is still gradually cooling. The internal heat
is transferred outward by convection; this gives
rise to flows in the metallic hydrogen, causing the
strong magnetic field.

The ring of Jupiter (Fig. 8.19) was discovered
in 1979. The innermost toroid-shaped halo is be-
tween 92,000-122,500 km from Jupiter’s centre.
It consists of dust falling from the main ring to-
ward the planet. The main ring extends from the
halo boundary out to about 128,940 km, just in-
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Fig. 8.19 Mosaic of Jupiter’s ring system taken by the
Galileo spacecraft when the spacecraft was in Jupiter’s
shadow looking back toward the Sun. Jupiter’s ring sys-
tem is composed of three parts: a thin outermost ring, a flat

side the orbit of the moon Adrastea. The ring
particles are small, a few microns only, and they
scatter light forward much more effectively than
backward. Therefore, they were not discovered
prior the Voyager flyby. A ring consisting of such
small particles cannot be stable, and new material
must enter the ring continuously. Possible sources
are the small moons Adrastea and Metis.

The two faint outermost rings are fairly uni-
form in nature. The inner of them extends from
the orbit of Adrastea out to the orbit of Amalthea
at 181,000 km. The fainter outermost ring ex-
tends out to Thebe’s orbit at 221,000 km.

Jupiter’s rings and moons exist within an in-
tense radiation belt of Jupiter’s magnetic field.
The magnetosphere extends 3—7 million kilome-
tres toward the Sun, depending on the strength
of the solar wind. In the opposite direction it
stretches to a distance of at least 750 million kilo-
metres, behind Saturn’s orbit.

Jupiter is an intense radio source. Its radio
emission can be divided into three components,
namely thermal millimetre and centimetre radia-
tion, nonthermal decimetric radiation and burstal-
decametric radiation. The nonthermal emission is
most interesting; it is partly synchrotron radia-
tion, generated by relativistic electrons in the Jo-
vian magnetosphere. Its intensity varies in phase
with Jupiter’s rotation; thus the radio emission
can be used for determining the exact rotation

main ring, and an innermost doughnut-shaped halo. These
rings are made up of dust-sized particles that originate
from lo, or are blasted off from the nearby inner satellites
by small impacts. (NASA/University of Arizona)

rate. The decametric bursts are related to the po-
sition of the innermost large moon, lo, and are
possibly generated by the electric current of mil-
lions of Amperes observed between Jupiter and
the plasma torus at the orbit of lo. Also auroras
are common in Jupiter (Fig. 8.20).

In the beginning of year 2016 there were
67 known moons of Jupiter, but probably more
small satellites will be found in the future. The
four largest, lo, Europa, Ganymede and Callisto
are called the Galilean satellites (Fig. 8.21), in
honour of Galileo Galilei, who discovered them
in 1610. The Galilean satellites can already be
seen with ordinary binoculars. They are the size
of the Moon or even planet Mercury. The other
moons are small, most of them only a few kilo-
metres in diameter.

Owing to tidal forces, the orbits of lo, Eu-
ropa and Ganymede have been locked into a res-
onance, so that their longitudes A strictly satisfy
the equation

Alo — 3)\Europa + 2)MGanymede =180°. (8.1

Hence the moons can never be in the same direc-
tion when seen from Jupiter.

Io is the innermost Galilean satellite. It is a lit-
tle larger than the Moon. Its surface is spotted by
numerous calderas, volcanoes without a moun-
tain. The molten material is ejected up to a height
of 250 km, and a part of the gas gets into lo’s or-
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Fig. 8.20 Left: NASA Hubble Space Telescope close-up
view of an aurora on Jupiter. The image shows the main
oval of the aurora, centred over the magnetic north pole,
and diffuse emissions inside the polar cap. (NASA, John
Clarke/University of Michigan) Right: The image taken

bit. The volcanic activity on Io is much stronger
than on the Earth. There is a 100 m bulk of
the permanent tide raised by Jupiter. Due to
the orbital perturbations caused by Europa and
Ganymede the orbit of Io is slightly elliptical and
therefore the orbital speed varies. The tidal bulk
is forced to move with respect to the surface. This
generates friction, which is transformed to heat.
This heat keeps the sulphur compounds molten
beneath the colourful surface of Io. No traces of
impact craters are visible. The whole surface is
new, being renewed continuously by eruptions.
There is no water on lo.

Europa is the smallest of the Galilean satel-
lites, a little smaller than the Moon. The surface
is ice-covered and the geometric albedo is as high
as 0.6. The surface is smooth with only a few fea-
tures more than a hundred metres high. Most of
the markings seem to be albedo features with very
low relief. Only a few impact craters have been
found indicating that the surface is young. The
surface is renewed by fresh water, trickling from
the internal ocean. Galileo spacecraft has found
a very weak magnetic field. The field varies pe-
riodically as it passes through Jupiter’s magnetic
field. This shows that there is a conducting mate-
rial beneath Europa’s surface, most likely a salty
ocean that could even be 100 km deep. At the cen-
tre, there is a solid silicate core.

on January 2001 by NASA’s Cassini spacecraft shows the
bubble of charged particles trapped in the magnetosphere.
The magnetic field and the torus of the ionised mate-
rial from the volcanoes of Io are drawn over the image.
(NASA/JPL/Johns Hopkins University)

Ganymede is the largest moon in the solar sys-
tem. Its diameter is 5300 km; it is larger than
the planet Mercury. The density of craters on the
surface varies, indicating that there are areas of
different ages. Ganymede’s surface is partly very
old, highly cratered dark regions, and somewhat
younger but still ancient lighter regions marked
with an extensive array of grooves and ridges.
They have a tectonic origin, but the details of the
formations are unknown. About 50 % of the mass
of the moon is water or ice, the other half being
silicates (rocks). Contrary to Callisto, Ganymede
is differentiated: a small iron or iron/sulphur core
surrounded by a rocky silicate mantle with an
icy (or liquid water) shell on top. Ganymede has
a weak magnetic field.

Callisto is the outermost of the large moons.
It is dark; its geometric albedo is less than 0.2.
Callisto seems to be undifferentiated, with only
a slight increase of rock toward the centre. About
40 % of Callisto is ice and 60 % rock/iron. The
ancient surface is peppered by meteorite craters;
no signs of tectonic activity are visible. How-
ever, there have been some later processes, be-
cause small craters have mostly been obliterated
and ancient craters have collapsed.

The currently known moons can be divided
into four different groups: small moons inside the
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Fig. 8.21 (7op) The Galilean satellites of Jupiter. From  Europa. (Right page bottom) Surface details of Ganymede
left to right: lo, Europa, Ganymede, and Callisto and Callisto. (NASA/Brown University, NASA/JPL)
(NASA/DLR). (Right page top) Surface details of Io and
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Fig. 8.22 Saturn and its rings. Three satellites (Tethys,
Dione, and Rhea) are seen to the left of Saturn, and the
shadows of Mimas and Tethys are visible on Saturn’s
cloud tops. (NASA/JPL)

orbits of the Galilean satellites, the Galilean satel-
lites, and two groups of irregular moons outside
the orbit of the Galilean satellites. The moons of
the inner distant group move on direct orbits, and
the moons of the most distant group on retrograde
orbits. It is possible that many of these are small
asteroids captured by Jupiter.

8.6 Saturn
Saturn (Fig. 8.22) is the second largest planet. Its
diameter is about 120,000 km, ten times the diam-
eter of the Earth, and the mass, 95 Earth masses.
The density is only 700 kgm™3, less than the
density of water. The rotation axis is tilted about
27° with respect to the orbital plane, so every 15
years, the northern or the southern pole is well
observable.

The rotation period is 10 h 39.4 min, deter-
mined from the periodic variation of the magnetic

Mimas

Fig. 8.23 A schematic drawing of the structure of the
Saturnian rings. The brightest A and B rings can be seen
even with a small telescope; the other ones are very faint

field by the Voyager spacecraft in 1981. However,
Cassini spacecraft observed in 2004 the period
of 10 h 45 min. The reason for the change is un-
known. Due to the rapid rotation, Saturn is flat-
tened; the flattening is 1/10, which can be easily
seen even with a small telescope.

The internal structure of Saturn resembles that
of Jupiter. Due to its smaller size, the metallic hy-
drogen layer is not so thick as on Jupiter. The
thermal radiation of Saturn is 2.8 times that of
the incoming solar flux. The heat excess origi-
nates from the differentiation of helium. The he-
lium atoms are gradually sinking inward and the
released potential energy is radiated out as a ther-
mal radiation. The abundance of helium in Sat-
urn’s atmosphere is only about half of that on
Jupiter.

The winds, or jet streams, are similar to those
of Jupiter but Saturn’s appearance is less colour-
ful. Viewed from the Earth, Saturn is a yellowish
disk without any conspicuous details. The clouds
have fewer features than those on Jupiter, be-
cause a haze, composed of hydrogen, ammonium
and methane floats above the cloud tops. Further-
more, Saturn is farther from the Sun than Jupiter
and thus has a different energy budget.

The temperature at the cloud tops is about
94 K. Close to the equator the wind speeds ex-
ceed 400 m/s and the zone in which the direc-
tion of the wind remains the same extends 40°
from the equator. Such high speeds cannot be ex-
plained with external solar heat, but the reason for
the winds is the internal flux of heat.

Saturn’s most remarkable feature is a thin ring
system (Figs. 8.23, 8.24), lying in the planet’s
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equatorial plane. The Saturnian rings can be seen
even with a small telescope. The rings were dis-
covered by Galileo Galilei in 1610; only 45 years
later did Christian Huygens establish that the for-
mation observed was actually a ring, and not
two oddly behaving bulbs, as they appeared to
Galileo. In 1857 James Clerk Maxwell showed
theoretically that the rings cannot be solid but
must be composed of small particles.

The rings are made of normal water ice. The
size of the ring particles ranges from microns to
truck-size chunks. Most of the particles are in
range of centimetres to metres. The width of the
ring system is more than 60,000 km (about the ra-
dius of Saturn) and the thickness, at most 100 m,
and possibly only a few metres. Cassini space-
craft discovered also molecular oxygen around
the rings, probably as a product of the disintegra-
tion of water ice from the rings.

According to Earth-based observations, the
rings are divided into three parts, called simply
A, B, and C. The innermost C ring is 17,000 km
wide and consists of very thin material. There is
some material even inside this (referred to as the
D ring), and a haze of particles may extend down
to the clouds of Saturn.

The B ring is the brightest ring. Its total width
is 26,000 km, but the ring is divided into thou-
sands of narrow ringlets, seen only by the space-
craft. From the Earth, the ring seems more or less

Fig. 8.24 At a close distance, the rings can be seen to be
divided into thousands of narrow ringlets. (JPL/NASA)

uniform. Between B and A, there is a 3000 km
wide gap, the Cassini division. It is not totally
void, as was previously believed; some material
and even narrow ringlets have been found in the
division by the Voyager space probes.

The A ring is not divided into narrow ringlets
as clearly as the B ring. There is one narrow but
obvious gap, Encke’s division, close to the outer
edge of the ring. The outer edge is very sharp, due
to the “shepherd” moon, some 800 km outside the
ring. The moon prevents the ring particles from
spreading out to larger orbits. It is possible that
the appearance of B is due to yet-undiscovered
moonlets inside the ring.

The F ring, discovered in 1979, is about
3000 km outside A. The ring is only a few hun-
dred kilometres wide. On both sides there is
a small moon; these shepherds prevent the ring
from spreading. An interior moon passing a ring
particle causes the particle to move to a larger or-
bit. Similarly, at the outer edge of the ring, a sec-
ond moon forces the particles inward. The net
result is that the ring is kept narrow.

Outside the F ring, there are some zones of
very sparse material, sometimes referred to as the
G and E rings. These are merely collections of
small particles.

The Saturnian rings were possibly formed to-
gether with Saturn and are not debris from some
cosmic catastrophe, like remnants of a broken
moon. The total mass of the rings is 107 of the
mass of Saturn. If all ring particles were collected
together, they would form an ice ball, 600 km in
diameter.

In 2009 a very sparse ring was observed at
the distance of the moon Phoebe. It has the same
inclination as Phoebe, nearly 30°. It has proba-
bly originated in material shattered from Phoebe
by micrometeorites. The ring extends inward to
the orbit of Iapetus. The hemispheres of Iapetus
are quite different, one side is very dark. Since
Iapetus always turns the same side towards Sat-
urn, only one hemisphere is hit by ring particles.
Eventually ice evaporates away leaving only the
dark cinder.

A total of 62 moons (in 2016) of Saturn
are known. Many of the large Saturnian moons
(Fig. 8.25) were observed by Pioneer 11 and Voy-
ager 1 and 2 spacecrafts. Some of the large moons
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Fig. 8.25 Saturnian moons photographed by the Cassini
spacecraft in 2005-2006 (a) Hyperion, (b) Enceladus,
(c) Iapetus and (d) Tethys. (e) A radar picture of the north-

like Enceladus and Tethys are composed mainly
of ice. The temperature of the primeval nebula at
the distance of Saturn was so low that bodies of
pure ice could form and survive.

Some moons are dynamically interesting;
some have an exotic geological past. Outside the
F ring, there are two moonlets, Epimetheus and
Janus, almost in the same orbit; the difference of
the semimajor axes is about 50 km, less than the
radii of the moons. The inner moon is gaining on
the outer one. The moons will not collide, since

ern latitudes of Titan, taken by Cassini in summer 2006.
The black patches are probably methane lakes. The width
of the picture is about 450 km. (Photo NASA)

the speed of the trailing moon increases and the
moon moves outward. The speed of the leading
moon decreases and it drops inward. The moons
exchange their roles roughly every four years.
There are also several shepherding satellites, like
Atlas, Prometheus and Pandora that keep rings in
their place. Their gravitational pull prevents ring
particles from drifting away.

The innermost of the “old” moons is Mimas.
There is a huge crater, named Herschel, on Mi-

mas’ surface with a diameter of 100 km and
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Fig. 8.25 (Continued)

a depth of 9 km (Fig. 8.25). Bigger craters exist
in the solar system, but relative to the size of the
parent body, this is almost the biggest crater there
could be room for (otherwise the crater would be
bigger than Mimas itself). On the opposite side,
some grooves can be seen, possibly signifying
that impact has almost torn the moon apart.

The surface of the next moon, Enceladus, con-
sists of almost pure ice, and one side is nearly
craterless. Craters and grooves can be found on
the other hemisphere. Tidal forces result in vol-
canic activity where water (not lava or other “hot”
material) is discharged to the surface.

Titan is the largest of the Saturnian moons.
Its diameter is 5100 km, so it is only slightly
smaller than Jupiter’s moon Ganymede. Titan is
the only moon with a dense atmosphere. The at-
mosphere is mainly nitrogen (99 %) and methane,
and the pressure at the surface is 1.6 bar. The
temperature is about 90 K. Reddish clouds form
the visible surface some 200 km above the solid
body. The Huygens lander made measurements
and sent images of Titan in 2005. It detected lakes
of methane as well as geysers ejecting methane,
ammonia and water.

8.7 Uranus

The planets from Mercury to Saturn were already
known in antiquity. The next planet, Uranus, can-
not be seen with the naked eye.

The famous German-English amateur astrono-
mer William Herschel discovered Uranus in 1781.
Herschel himself first thought that the new ob-
ject was a comet. However, the extremely slow
motion revealed that the body was far beyond
the orbit of Saturn. Based on the first observa-
tions, the Finnish astronomer Anders Lexell cal-
culated a circular orbit. He was one of the first
to propose that the newly discovered object was
a planet. Johann Bode of the Berlin Observatory
suggested the name Uranus but more than five
decades passed before the name was unanimously
accepted.

The mean distance of Uranus is 19 au, and the
orbital period 84 years. The inclination of the ro-
tation axis is 98°, which is totally different from
the other planets. Due to this uncommon geom-
etry, the poles are either lit or in darkness for
decades. The rotation period, confirmed by the
Voyager 2 magnetometric measurements in 1986,
is 17.3 hours; the exact period had been uncertain
prior to the fly-by.

Uranus is greenish, as viewed through a tele-
scope. Its colour is due to the strong methane ab-
sorption bands in the near-infrared. A part of the
red light is also absorbed, leaving the green and
blue part of the spectrum untouched. Uranus is
almost featureless (Fig. 8.26) because its clouds
are below a thick haze or smog. The origin of the
smog may be methane that solar radiation broke
into radicals which then formed e.g. asethylene
and ethane.
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Fig. 8.26 Two views of Uranus. The left picture shows
Uranus as it would appear to the naked eye. (NASA).

At the right there is a Hubble Space Telescope view of

Uranus surrounded by its rings. Also 10 satellites are vis-
ible in the original picture. (Seidelmann, U.S. Naval Ob-
servatory, and NASA)

Fig. 8.27 Left: The rings of Uranus are very narrow and
composed of a dark material. Nine rings are visible in the
picture of Voyager in 1986. Right: Rings seen in the light

The strong limb darkening caused by the smog
makes the terrestrial determination of the Uranus’
size difficult. Therefore, the radius was not accu-
rately determined until 1977 during a stellar oc-
cultation caused by Uranus. The rings of Uranus
were discovered at the same time.

The internal structure of Uranus is thought
to be slightly different from that of other giant

scattered forward when the Voyager spacecraft was in the
shadow of the planet. (NASA)

planets. Above the innermost rocky core, there is
a layer of water, which, in turn, is surrounded by
a mantle of hydrogen and helium. The mixture of
water and ammonia and methane therein are dis-
sociated to ions under the heavy pressure. This
mixture behaves more like a molten salt than wa-
ter. The convection flows in this electrically con-
ductive “sea” give rise to the Uranian magnetic
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Fig. 8.28 Four Uranian moons (from fop left to lower right): Miranda, Ariel, Titania and Umbriel. (NASA)

field. The strength of the magnetic field at the
cloud tops is comparable to the terrestrial field.
However, Uranus is much larger then the Earth,
so the true strength of the field is 50 times greater
than that of the Earth. The Uranian magnetic field
is tilted 59° with respect to the rotation axis. No
other planet has such a highly inclined magnetic
field.

The Uranian rings (Fig. 8.27) were discovered
in 1977, during a stellar occultation. Secondary
occultations were observed before and after the
main event. A total of 13 rings are known, nine of

which were discovered in the occultation. The in-
nermost ring is broad and diffuse. All other rings
are dark and very narrow, only a few hundred me-
tres or a few kilometres wide. The Voyager 2 re-
sults showed that the rings contain very little dust,
unlike those of Jupiter and Saturn. The mean size
of the ring particles is more than 1 metre. The ring
particles are darker than practically any known
material in the solar system; the cause of this dark
colour is unknown.

There are 27 moons (2016 number) orbiting
around Uranus, ten of which were discovered by
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Voyager 2. The geological history of some moons
is puzzling, and many features reminiscent of an
active past can be found.

The innermost of the large moons, Miranda,
is one of the most peculiar objects discovered
(Fig. 8.28). It has several geological formations
also found elsewhere (but here they are all mixed
together), in addition to the quite unique V-
shaped formations. It is possible that Miranda’s
present appearance is the result of a vast colli-
sion that broke the moon apart; some pieces may
have later settled down, inside out. Another pe-
culiar object is Umbriel. It belongs to the ever
increasing family of unusual dark bodies (such as
the Uranian rings, one side of lapetus and Hal-
ley’s comet). The dark surface of Umbriel is cov-
ered by craters without any traces of geological
activity.

8.8 Neptune

The orbit of Uranus was already well known in
the beginning of the 19th century. However, some
unknown perturbations displaced Uranus from
its predicted orbit. Based on these perturbations,
John Couch Adams, of Cambridge, and Urbain

Jean-Joseph Le Verrier, of Paris, independently
predicted the position of the unknown perturbing
planet.

The new planet was discovered in 1846 by Jo-
hann Gotifried Galle at the Berlin Observatory;
Le Verrier’s prediction was found to be only 1°
off. The discovery gave rise to a heated contro-
versy as to who should be given the honour of
the discovery, since Adams’ calculations were
not published outside the Cambridge Observa-
tory. When the quarrel was settled years later,
both men were equally honoured. The discovery
of Neptune was also a great triumph of the New-
tonian theory of gravitation.

The semimajor axis of the orbit of Neptune
is 30 au and the orbital period around the Sun
165 years. The internal rotation period, confirmed
by Voyager 2 in 1989, is 16 hours 7 minutes
and the rotation period of the outer layers of the
clouds is about 17 hours. The obliquity of the ro-
tation axis is 29° but the magnetic field is tilted
some 47° with respect to the rotation axis. The
magnetic field is tilted like in Uranus, but the field
strength is much smaller.

The density of Neptune is 1638 kgm™>, and
the diameter 49,500 km. Thus the density of Nep-

Fig. 8.29 (Left) Neptune shows more features than
Uranus. In the picture of Voyager 2 the Great Dark Spot,
accompanied by bright, white clouds is well visible. Their
appearance is changing rapidly. To the south of the Great
Dark Spot is a bright feature and still farther south is an-
other dark spot. Each feature moves eastward at a different

velocity. (Right) Details of the Southern Dark Spot. The
V-shaped structure near the right edge of the bright area
indicates that the spot rotates clockwise. Unlike the Great
Red Spot on Jupiter, which rotates counterclockwise, the
material in the Neptune’s dark oval will be descending.
(NASA/JPL)
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Fig. 8.30 The rings of Neptune. Ring particles are small
and best visible in the forward scattered light. There are
several brightenings in the outermost ring. One of the rings
appears to have a twisted structure. Neptune at left is over-
exposed. (NASA/JPL)

tune is higher than that of other giant planets. The
internal structure is quite simple: The core, com-
posed of silicates (rocks) is about 16,000 km in
diameter. This is surrounded by a layer of wa-
ter and liquid methane and the outermost gaseous
layer, atmosphere, is mainly composed of hydro-
gen and helium, methane and ethane being a mi-
nor components.

Cloud structures are more complicated than on
Uranus, and some dark spots, like in Jupiter, were
visible during the Voyager fly-by (Fig. 8.29). The
speed of the winds are high, up to 400 m/s.

Like other giants, Neptune also has rings
(Fig. 8.30). The rings were discovered by Voy-
ager 2, although their existence was already ex-
pected prior the fly-by. Two relatively bright but
very narrow rings are at a distance of 53,000 and
62,000 km from the centre of the planet. More-
over, there are some faint areas of fine dust.

There are 14 known moons, six of which were
discovered by Voyager 2. Before the Voyager fly-

Fig. 8.31 The southern hemisphere of Triton, Neptune’s
largest satellite in a picture taken in 1989 by Voyager 2.
The dark spots may indicate eruptions of “icy volcanoes”.
Voyager 2 images showed active geyser-like eruptions
spewing nitrogen gas and dark dust particles several kilo-
metres into the atmosphere. (NASA)

by, only two of them, Triton and Nereid, were
known.

The largest of the moons, Triton, is 2700 km
in diameter, and it has a thin atmosphere, mainly
composed of nitrogen. The albedo is high: Triton
reflects 60-80 % of the incident light. The sur-
face is relatively young, without any considerable
impact craters (Fig. 8.31). There are some ac-
tive “geysers” of liquid nitrogen, which partly ex-
plains the high albedo and the lack of the craters.
The low surface temperature of Triton, 37 K,
means that the nitrogen is solid and covers the
surface like snow. It is the lowest surface temper-
ature known in the solar system.

8.9 DwarfPlanets

Besides actual planets there are some planet like
objects that orbit the Sun and are nearly spheri-
cal but have not managed to clear the neighbour-
hood of their orbits. The upper and lower lim-
its to the size and mass of dwarf planets are not
strictly specified. The lower limit, however, is de-
termined by the hydrostatic equilibrium shape,
but the size at which this happens may vary ac-
cording to the composition and history of the ob-
ject. It is estimated that up to 40-50 dwarf planets
will be discovered in coming years.
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Fig. 8.32 A small portion of the pair of pictures where Pluto was discovered in 1930. The planet is marked with an
arrow. (Lowell Observatory)

Currently, there are five dwarf planets in
the Solar System, namely Ceres, Pluto, Eris,
Haumea, and Makemake. Ceres was formerly
counted as an asteroid, Pluto was a planet and
Eris (2003 UB 313, known also by the nickname
Xena) was the first Trans-Neptunian object which
turned out to be larger than Pluto.

Pluto Pluto was discovered in 1930 at the Low-
ell Observatory, Arizona, after an extensive pho-
tographic search (Fig. 8.32). This search had al-
ready been initiated in the beginning of the cen-
tury by Percival Lowell, on the basis of the pertur-
bations observed in the orbits of Uranus and Nep-
tune. Finally, Clyde Tombaugh discovered Pluto
less than 6° off the predicted position. However,
Pluto turned out to be far too small to cause any
perturbations on Uranus or Neptune. Thus the
discovery was purely accidental, and the pertur-
bations observed were not real, but caused by mi-
nor errors of old observations.

The orbit of Pluto is different from planetary
orbits. The eccentricity is 0.25 and the inclination
is 17°. During its 250 year orbit, Pluto is closer
to the Sun than Neptune for 20 years; one such
period lasted from 1979 to 1999. There is no dan-
ger of Pluto and Neptune colliding, since Pluto
is high above the ecliptic when at the distance of
Neptune. Pluto’s orbital period is in a 3:2 reso-
nance with Neptune.

Pluto has no visible disk as seen with terres-
trial telescopes; instead, it resembles a point, like

a star. This fact gave an upper limit for the di-
ameter of Pluto, which turned out to be about
3000 km. The exact mass was unknown until
the discovery of the Plutonian moon, Charon, in
1978. The mass of Pluto is only 0.2 % of the
mass of the Earth. The orbital period of Charon
is 6.39 days, and this is also the period of rota-
tion of both bodies. Pluto and Charon rotate syn-
chronously, each turning the same side towards
the other body. The rotation axis of Pluto is close
to the orbital plane: the tilt is 122°.

Mutual occultations of Pluto and Charon in
1985-1987 gave accurate diameters of each body:
The diameter of Pluto is 2300 km and that of
Charon, 1200 km. The density of Pluto turned
out to be about 2100 kgm™3. Thus Pluto is not
a huge iceball but about 2/3 of its mass is com-
posed of rocks. The relatively small abundance of
ices is possibly due to the low temperature dur-
ing the planetary accretion when most of the free
oxygen was combined with carbon forming car-
bon monoxide. The computed lower limit for wa-
ter ice is about 30 % which is fairly close to the
value observed in Pluto.

Pluto has a thin methane atmosphere and there
is possibly a thin haze over the surface. The sur-
face pressure is 107>—107% atm. It has been spec-
ulated that when Pluto is far from perihelion, the
whole atmosphere will become frozen and fall on
the surface.

Pluto has five satellites. Two of them were dis-
covered by the Hubble Space Telescope in 2005
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Fig. 8.33 The Hubble Space Telescope photographed
Pluto and its three known moons in February 2006. The
smaller moons were found in 2005, and were later named
Nix and Hydra. Their diameter is estimated as 40-160
km. (M. Mutchler (STScI), A. Stern (SwWRI), and the HST
Pluto Companion Search Team, ESA, NASA)

Fig.8.34 The only detailed images of Pluto were sent by
the New Horizons probe in 2015. The light heart shaped
area was named the Tombaugh region to honour the finder
of Pluto. The dark area to the left of is called the Cthulhu
region; Cthulhu is a mythical demon in H.P. Lovecraft’s
horror stories (NASA)

(Fig. 8.33). They orbit Pluto counterclockwise
twice the distance of Charon. The New Horizons
probe found two more moons.

Ceres Ceres was the first asteroid discovered in
1801 by Giuseppe Piazzi. It is also the largest of
the main belt asteroids moving inside Jupiter’s or-
bit. Its diameter is about 1000 km, thus exceed-

ing the limit to be in the hydrostatic equilibrium.
Thus it is no more an asteroid but a dwarf planet.
The average opposition magnitude of Ceres is
7.9. Thus it can be seen with binoculars but not
with the naked eye.
Nearby images taken by a space probe show a
few highly reflecting spots.

Eris In 2003 a Trans-Neptunian object was
found, initially labelled as 2003 UB313. One of
the initial nicknames was Xena according to the
heiress of a tv series. When a moon orbiting Xena
was found, it was obviously names as Gabrielle.
However, these names never became official. The
bigger object was given the name Eris and its
companion Dysnomia.

The size of Eris is similar to that of Pluto. The
size is, however, an estimate based on infrared ra-
diation. Yet it was big enough to be classified as
a planet if Pluto had retained its planetary status.
Now Eris is a dwarf planet. The semimajor axis
of the orbit is 97 au, orbital period 560 years and
inclination 45°.

8.10 Minor Bodies

In addition to planets, moons orbiting the planets,
dwarf planets and other biggish objects the solar
system contains a lot of smaller objects that can
be collectively called minor bodies.

The class of minor bodies includes aster-
oids, comets, meteoroids, and interplanetary dust.
Howeyver, there is no clear distinction between the
groups. Some asteroids are cometlike, some as-
teroids coming close to the Earth may have earlier
been comets that have lost all of their volatile ma-
terial. The classification is based more on the vi-
sual appearance and tradition than physical prop-
erties.

8.11 Asteroids

Asteroids form a large and scattered group of
Sun-orbiting bodies. The oldest and best-known
group form the main asteroid belt between Mars
and Jupiter, with distances of 2.2-3.3 au from the
Sun (Fig. 8.38). The most distant asteroids are far
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Fig. 8.35 Top: Ceres was the first detected asteroid.
Spacecraft images shows its spherical shape, and so it be-
came a dwarf planet. Middle: Vesta is clearly nonspheri-
cal and has remained as a minor body. It is the brightest
asteroid: at opposition under ideal conditions it could be
seen even with the naked eye. Bottom: The asteroid (243)
Ida and a small moon Dactyl orbiting the asteroid. The ir-
regular shape is typical for most asteroids. Ida is the first
asteroid known to have a satellite

beyond the orbit of Pluto, called Trans-Neptunian
objects. There are also a number of asteroids that
come closer to the Sun than the Earth.

Earlier asteroids were called minor planets or
even planetoids. These names were actually more
natural than asteroid that only means that the ob-
ject looks a starlike dot, although it has nothing
to do with stars.

The first asteroid was found in 1801 (Ceres,
now a dwarf planet), and at the beginning of
2016 there were more than 750,000 catalogued
and 15,000 named asteroids. There were also a
huge number of asteroids with an approximate or-
bit. The number of catalogued asteroids increases
currently by thousands every month. It has been
estimated that more than about half a million as-
teroids larger than 1 km exist in the Solar Sys-
tem. Diameters of asteroids vary from hundreds
of meters to hundreds of kilometers. The largest
asteroid Ceres is classified as a dwarf planet and
the border between smallest asteroids and mete-
oroids is not specified.

An asteroid observer needs a telescope, since
even the brightest asteroids are too faint to be
seen with the naked eye. Asteroids are points of
light like a star, even if seen through a large tele-
scope; only their slow motion against the stellar
background reveals that they are members of the
solar system.

The rotation of an asteroid gives rise to a reg-
ular light variation. The amplitude of light varia-
tion is in most cases well below 1 magnitude and
typical rotation periods range from 4 to 15 hours.

The characteristics of the main belt asteroids
are best known. Total mass of the main belt as-
teroids is less than 1/1000 of the mass of the
Earth. The centre of the asteroid belt is at a dis-
tance of approximately 2.8 au, as predicted by the
Titius—Bode law (Sect. 7.11). According to a for-
merly popular theory, asteroids were thought to
be debris from the explosion of a planet. This the-
ory, like catastrophe theories in general, has been
abandoned.

The currently accepted theory assumes that as-
teroids were formed simultaneously with the ma-
jor planets. The primeval asteroids were large
chunks, most of them orbiting between the orbits
of Mars and Jupiter. Due to mutual collisions and
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Fig.8.36 Left: Asteroid (951) Gaspra was photographed
by the Galileo spacecraft in October 1991. The illumi-
nated part of the asteroid is about 16 x 12 km. The smallest
craters in this view are about 300 m across. Right: A mo-
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Fig. 8.37 Quasimoons or pseudomoons are asteroid
moving on rather peculiar orbits. They are not real moons,
since they orbit the Sun, but the orbital period is very close
to that of some planet. Thus the asteroid seems to oscillate
around the planet. A quasimoon moves on an eccentric or-
bit inside and outside the orbit of the planet. Eventually the
asteroid will drift away from the planet but will return after
along time. Venus and Neptune each have one quasimoon
and the Earth has several. The orbits of the quasimoons
have been studied e.g. Seppo Mikkola in Finland and the
Canadians Kimmo Innanen and Paul Wiegert

saic of asteroid (433) Eros was taken by the NEAR space-
craft from a distance of 200 km. The crater on top is about
5 km in diameter. The NEAR spacecraft orbited Eros for
one year and finally landed on it in 2001. (JPL/NASA)

fragmentation, the present asteroids are debris of
those primordial bodies which were never able to
form a large planet. Some of the biggest aster-
oids may be those original bodies. The orbital el-
ements of some asteroids are very similar. These
are called the Hirayama families. They are proba-
bly remnants of a single, large body that was bro-
ken into a group of smaller asteroids. There are
tens of identified Hirayama families, the largest
ones including Hungarias, Floras, Eos, Themis,
and Hildas (named after the main asteroid in the
group).

The distribution of asteroids inside the aster-
oid belt is uneven (Fig. 8.38); they seem to avoid
some areas known as the Kirkwood gaps. The
most prominent void areas are at distances where
the orbital period of an asteroid around the Sun
(given by Kepler’s third law) is in the ratio 1:3,
2:5, 3:7, or 1:2 to the orbital period of Jupiter.
The motion of an asteroid orbiting in such a gap
would be in resonance with Jupiter, and even
small perturbations would tend to grow with time.
The body would eventually be moved to another
orbit. However, the resonance effects are not so
simple: sometimes an orbit is “locked” to a reso-
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Fig. 8.38 (a) Most of the
asteroids orbit the Sun in
the asteroid belt between
Mars and Jupiter. The
figure shows the positions
of about 96,000 catalogued
asteroids on January 1,
2000, and the orbits and
the positions of some
major planets. The orbital
elements of the asteroids
are from the Lowell
Observatory data base.
(b) The total number of
asteroids as a function of
the distance from the Sun.
Each bin corresponds to
0.1 AU. The empty areas,
the Kirkwood gaps, are at
those points, where the
orbital period of an asteroid
is in a simple ratio to the
orbital period of Jupiter
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nance, e.g. the Trojans move along the same orbit
as Jupiter (1:1 resonance), and the Hilda group is
in the 2:3 resonance.

Many groups of asteroids orbit the Sun outside
the main belt. These include the above-mentioned
Trojans, which orbit 60° behind and ahead of
Jupiter. The Trojans, which are close to the spe-
cial points L4 and L5 of the solution of the re-
stricted three-body problem. At these Lagrangian
points, a massless body can remain stationary
with respect to the massive primaries (in this case,
Jupiter and the Sun). In fact, the asteroids are
oscillating around the stationary points, but the
mean orbits can be shown to be stable against per-
turbations.

Another large family is the Apollo-Amor as-
teroids. The perihelia of Apollo and Amor are in-

side the Earth’s orbit and between the orbits of the
Earth and Mars, respectively. These asteroids are
all small, less than 30 km in diameter. The most
famous is 433 Eros (Fig. 8.36), which was used in
the early 20th century for determining the length
of the astronomical unit. When closest to the
Earth, Eros is at a distance of only 20 million km
and the distance can be directly measured using
the trigonometric parallax. Some of the Apollo-
Amor asteroids could be remnants of short-period
comets that have lost all their volatile elements.
There is a marginal probability that some
Earth-crossing asteroids will collide with the
Earth. It has been estimated that, on the average,
a collision of a large asteroid causing a global
catastrophe may take place once in one million
years. Collisions of smaller bodies, causing dam-
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Fig. 8.39 The Kuiper Belt
is a disk-shaped cloud of
distant icy bodies inside
the halo of the Oort cloud.
The short-period comets
originate in the Kuiper belt,
whereas a huge amount of
icy bodies that form

a source of long period
comets resides in the Oort
cloud (see Sect. 8.12).
(JPL/NASA)
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Kuiper Belt and outer

The Oort Cloud
(comprising many
billions of comets)

Oort Cloud cutaway
drawing adapted from
Donald K. Yeomars
illustration (NASA, JPL)

age similar to a nuclear bomb, may happen once
per century. It has been estimated that there are
500-1000 near-Earth asteroids larger than one
kilometre in diameter but possibly tens of thou-
sands smaller objects. Programs have been started
to detect and catalogue all near-Earth asteroids
and to predict the probabilities of hazardous col-
lisions.

Distant asteroids form the third large group
outside the main asteroid belt. The first asteroid
belonging to this group (2060) Chiron, was dis-
covered in 1977. Chiron’s aphelion is close to the
orbit of Uranus and the perihelion is slightly in-
side the orbit of Saturn. Distant asteroids are very
faint and thus difficult to find.

Already in the 1950’s Gerard Kuiper sug-
gested that comet-like debris from the formation
of the solar system can exist beyond the orbit of
Neptune as an additional source of comets to the
more distant Oort cloud. Later, computer simula-
tions of the solar system’s formation showed that
a disk of debris should form at the outer edge of
the solar system. The disk is now known as the
Kuiper belt (Fig. 8.39).

The first Trans-Neptunian asteroid (1992 QB1)
was discovered in 1992, and in the beginning of

Solar System planetary orbits

Orbit of Binary
Kuiper Belt Object
41998 WW31

year 2006 there were about 1000 known mem-
bers. The total number of Kuiper belt objects
larger than 100 km in diameter is estimated to
be over 70,000. Some of them may be even larger
than Pluto. The Kuiper belt objects are remnants
from the early accretion phases of the solar sys-
tem. Several of the Trans-Neptunian objects are
in or near a 3:2 orbital period resonance with
Neptune, the same resonance as Pluto. Therefore
they are called plutinos.

The exact sizes of asteroids were long un-
known. Edward E. Barnard of the Lick Ob-
servatory determined visually the diameters of
(1) Ceres, (2) Vesta, (3) Juno, and (4) Pallas in
the 1890’s (Fig. 8.39). Practically no other re-
liable results existed prior to the 1960’s, when
indirect methods applying photometry and spec-
troscopy were adopted. Moreover, several stellar
occultations caused by asteroids have been ob-
served since 1980’s.

The first images of asteroids were obtained in
the early 1990’s. In 1991 the Galileo spacecraft
passed asteroid (951) Gaspra, and in 1993 as-
teroid (243) Ida, on its long way to Jupiter (see
Sect. 8.15). Finally, in 2001, the NEAR space-
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Fig. 8.40 Sizes of some asteroids compared with the
Moon. (Moon image, NASA)

craft landed on asteroid (433) Eros after orbiting
it for one year.

The images of asteroids (Fig. 8.35) show ir-
regular, crater-filled bodies with regolith and pul-
verised rock on their surface. Some asteroids may
once have been two separate objects that merged
into one. In 1992 asteroid (4179) Toutatis passed
the Earth only by 4 million kilometres. Radar im-
ages revealed a two-body system, where the com-
ponents were touching each other. Double aster-
oids may be quite common, and there exist light
curves of some asteroids which have been inter-
preted as results of twin bodies. Another example
of a twin asteroid is 243 Ida that has a “moon”,
a smaller body gravitationally bound to it.

The composition of main belt asteroids is sim-
ilar to that of iron, stone and iron-stone mete-
orites. Most asteroids can be divided into three
groups, according to their photometric and po-
larimetric properties. 95 % of the classified aster-
oids belong to the types C and S types. Metal-rich
M type asteroids are rarer.

About 75 percent of asteroids belong to the
type C type. The C asteroids are dark due to
radiation darkening (geometric albedo p =~ 0.06
or less), and they contain a considerable amount
of carbon (mnemonic C for carbon). They re-
semble stony meteorites. The material is undif-

ferentiated and thus they belong to the most pri-
mordial bodies of the solar system. The reflec-
tivity of silicate-rich S asteroids is higher and
their spectra are close to those of stone-iron me-
teorites. Their spectra show signs of silicates,
such as olivine, e.g. fosterite Mg>SiO4 or fay-
alite Fe;SiO4. M type asteroids have more met-
als, mostly nickel and iron; they have undergone
at least a partial differentiation.

The compositions and even sizes of the Trans-
Neptunian objects are difficult to determine. They
are dim, and due to their low temperature, the
black-body radiation maximum is around 60 pm.
This wavelength is almost impossible to observe
on the Earth. Even the estimations of the albedos,
and therefore the diameter are very uncertain.

Colours of TNOs range from blue-grey to red
and the distribution appears to be uniform. How-
ever, population of the low-inclination objects
seem to be red and high-inclination objects blue.
The unperturbed orbits of the low-inclination ob-
jects suggest that they represent a relic of the
original population of the Kuiper belt.

Interpretations of the spectra are ambiguous
and spectra may not describe the composition of
the whole object. The surface is altered by in-
tense radiation, solar wind and micrometeorites
and it can be quite different from the regolith and
deeper layers underneath.

Small TNOs are probably mixtures of rock
and ice with some organic surface material. The
composition is similar to the comets. High den-
sity (2000-3000 kg m™3) of some large objects
suggests a high non-ice content, similar to Pluto.

8.12 Comets

Comets are agglomerates of ice, snow, and dust;
a typical diameter is of the order of 10 km or less.
The nucleus contains icy chunks and frozen gases
with embedded rock and dust. At its centre, there
can be a small, rocky core.

Comets are the only celestial objects named
after their finders. The letter P (periodic) preced-
ing some names indicates that planetary perturba-
tions have changed the orbit so that the comet has
remained orbiting the Sun.



220

8 Objects of the Solar System

A comet is invisible when far from the Sun;
when it gets closer than about 2 au, the heat of
the Sun starts to melt the ice and snow. The out-
flowing gas and dust form an envelope, the coma
around the nucleus. Radiation pressure and the
solar wind push ionised gas and dust away from
the Sun, resulting in the typical long-tailed shape
of a comet (Fig. 8.42).

The tail is always pointing away from the Sun,
a fact which was noticed in the 16th century. Usu-
ally, there are two tails, an ion tail (gas tail) and
a dust tail. The partly ionised gas and very fine
dust in the ion tail are driven by the solar wind.
Some of the light is reflected solar light, but the
brightness of the ion tail is mostly due to emis-
sion by the excited atoms. The dust tail is caused
by the radiation pressure. Because the velocities
of the particles of the dust tail are lower than the
velocities in the ion tail, the dust tail is often more
curved than the ion tail.

Fred Whipple introduced in 1950’s a “dirty
snowball” theory to describe the cometary struc-
ture. According to this model, cometary nuclei

Fig. 8.41 Lower right: A composite image of the nu-
cleus of comet P/Halley taken by ESA Giotto spacecraft in
1986. The size of the nucleus is approximately 13 x 7 km.
Dust jets are originating from two regions on the nucleus.
(ESA/Max Planck Institut fiir Aeronomie)

are composed of ice mixed with gravel and dust.
The observations have revealed that the classi-
cal dirty snowball model is not quite accurate;
at least the surface is more dirt than snow, also
containing organic compounds. Several chemical
compounds have been observed, including water
ice, which probably makes up 75-80 % of the
volatile material. Other common compounds are
carbon monoxide (CO), carbon dioxide (CO»),
methane (CH4), ammonia (NH3), and formalde-
hyde (H,CO).

The most famous (and also best known) pe-
riodic comet is Halley’s comet (Fig. 8.42). Its or-
bital period is about 76 years; it was last in perihe-
lion in 1986. During the last apparition, the comet
was also observed by spacecraft, revealing the
solid cometary body itself for the first time. Hal-
ley is a 13 x 7 km, peanut-shaped chunk whose
surface is covered by an extremely black layer of
a possibly tar-like organic or other similar mate-
rial. Violent outbursts of gas and dust make an ex-
act prediction of its brightness impossible, as of-
ten noticed when cometary magnitudes have been
predicted. Near the perihelion, several tons of gas
and dust burst out every second.

Cometary material is very loose. Ablation of
gas and dust, large temperature variations and
tidal forces sometimes cause the whole comet to
break apart. Comet Shoemaker—Levy 9 which im-
pacted into Jupiter in 1994 was torn apart two
years earlier when it passed Jupiter at a dis-
tance of 21,000 km (Fig. 8.44). The impact of
Shoemaker-Levy 9 showed that there can be den-
sity variation (and perhaps variation in composi-
tion, too) inside the original cometary body.

Comets are rather ephemeral things, surviving
only a few thousand revolutions around the Sun
or less. The short-period comets are all newcom-
ers and can survive only a short time here, in the
central part of the solar system.

Since comets in the central solar system are
rapidly destroyed, there has to be some source
of new short-period comets. In 1950 Jan Oort
discovered a strong peak for aphelia of long pe-
riod comets at a distance of about 50,000 au, and
that there is no preferential direction from which
comets come (Fig. 8.43). He proposed that there
is a vast cloud of comets at the outer reaches of
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Fig. 8.42 Top: Comet Mrkos in 1957. The tail typical to
comets is caused by the solar wind and radiation pressure
when the comet approaches the Sun (Palomar Observa-

the solar system, now know as the Oort cloud
(Fig. 8.45). The total mass of the Oort cloud is
estimated to be tens of Earth masses, containing
more than 10'? comets.

A year later Gerard Kuiper showed that there
is a separate population of comets. Many of
the short period comets, with periods less than
200 years, have the orbital inclination less than
40°, and they orbit the Sun in the same direction
as the Earth. The orbital inclination of long period
comets are not peaked around the plane of the
ecliptic but they are more random. Kuiper argued

tory). Down: The comet Churyumov—Gerasimenko is the
first comet where a space probe has landed and sent de-
tailed closeup images. (ESA)

that the short period comets originate from a sep-
arate population of comets that resides in a disk-
like cloud beyond the orbit of Neptune. The area
is now known as the Kuiper belt (Fig. 8.39).
Occasionally perturbations from passing stars
send some of the comets in the Oort cloud into or-
bits, which bring them into the central parts of the
solar system, where they are seen as long-period
comets. Around a dozen “new” comets are dis-
covered each year. Most of these are visible only
with a telescope, and only a couple of times per
decade one can see a bright naked-eye comet.
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Some of the long period comets are put into
short period orbits by the perturbations of Jupiter
and Saturn, whereas some others can be ejected
from the solar system. However, there are no
comets that have been proven to come from inter-
stellar space, and the relative abundances of sev-
eral isotopes in the cometary matter are the same
as in other bodies of our solar system.

The origin of the Oort cloud and Kuiper belt
is different. The Oort cloud objects were formed
near the giant planets and have been ejected to
the outer edge of the solar system by gravitational
perturbations soon after the formation of the solar
system. Small objects beyond the orbit of Nep-

Jupiter

Vaisala 1

Fig. 8.43 Orbits of short period comets projected to the
plane of the ecliptic

tune had no such interactions and they remained
near the accretion disk.

In 2014 ESA’s Rosetta probe settled on an or-
bit around the comet Churyumov-Gerasimenko
and sent the Philae lander to its surface. The lan-
der found several organic compounds and hard
ice below a dust layer about 20 centimetres thick.
The water vapour emanating from the comet was
different from the terrestrial water: the ratio of
deuterium to ordinary hydrogen was three times
higher than on the Earth. This suggests that the
source of water on the Earth is not comets, at least
not of those like Churyumov-Gerasimenko.

8.13 Maeteoroids

Solid bodies smaller than asteroids are called me-
teoroids. The boundary between asteroids and
meteoroids, however, is diffuse; it is a matter of
taste whether a ten metre body is called an as-
teroid or a meteoroid. We could say that it is an
asteroid if it has been observed so often that its
orbital elements are known.

When a meteoroid hits the atmosphere, an
optical phenomenon, called a meteor (“shooting
star”’) is seen (Fig. 8.47). The smallest bodies
causing meteors have a mass of about 1 gram; the
(micro)meteoroids smaller than this do not result
in optical phenomena. However, even these can
be observed with radar which is able to detect
the column of ionised air. Micrometeoroids can

Fig. 8.44 Comet Shoemaker—Levy 9 five months before its collision to Jupiter as seen by the Hubble Space Telescope.
(JPL/NASA)
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Fig. 8.45 A schematic diagram of the distribution of the
semimajor axes of long-period comets. The abscissa is
the inverse of the semimajor axis, 1/a [AU]~'. The Oort
cloud is visible as a strong peak at the very small positive
values of 1/a. The orbits shown here are the “original or-
bits”, i.e. computed backward in time to remove all known
perturbations

also be studied with particle detectors installed
in satellites and space crafts. Bright meteors are
called bolides.

The number of meteoroids increases rapidly as
their size diminishes. It has been estimated that
at least 10° kg of meteoritic material falls on the
Earth each day. Most of this material is microm-
eteoroids and causes no visible phenomena.

Due to perspective, all meteors coming from
the same direction seem to radiate from the same
point. Such meteor streams (meteor showers) are,
e.g. the Perseids in August and the Geminides in
December; the names are given according to the
constellation in which the radiation point seems
to be. On the average, one can see a few sporadic
meteors (Fig. 8.46) per hour. During a strong me-
teor shower one can see even tens of meteors per
minute, although a normal rate is some tens per
hour.

Most of the meteoroids are small and burn to
ashes at a height of 100 km. However, larger bod-
ies may come through and fall to the Earth. These
are called meteorites. The relative speed of a typi-
cal meteoroid varies in the range 10-70 km/s. The
speed of the largest bodies does not diminish in
the atmosphere; thus, they hit the Earth at their
cosmic speeds, resulting in large impact craters.
Smaller bodies slow down and drop like stones

€venind

Fig. 8.46 When the Earth is moving on its orbit, the
morning hemisphere is the leading one. Hence most of the
meteoroids coming from random directions hit the morn-
ing hemisphere. Thus most meteors can be seen between
midnight and sunrise

Fig. 8.47 Meteors are easy to capture on film: one just
leaves a camera loaded with a sensitive film on a tripod
with the shutter open for an hour or so. Stars make curved
trails on the film. (L. Hdkkinen)

but impacts of large bodies (diameter meters or
more) may cause large-scale disaster.

Iron meteorites or irons, composed of almost
pure nickel-iron, comprise about one quarter of
all meteorites. Actually the irons are in a minor-
ity among meteoroids, but they survive their vio-
lent voyage through the atmosphere more easily
than weaker bodies. Three-quarters are stony me-
teorites, or stone-iron meteorites.
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Fig. 8.48 A projection of
the entire infrared sky
created from observations
of the COBE satellite. The
bright horizontal band is
the Milky Way. The dust of
the solar system, visible on
the Earth as zodiacal light
is an S-shaped glow across
the image. (G. Greaney and
NASA)

Meteoroids themselves can be divided into
three groups of roughly equal size. One-third
is ordinary stones, chondrites. The second class
contains weaker carbonaceous chondrites and
the third class includes cometary material, loose
bodies of ice and snow which are unable to sur-
vive down to the Earth.

Many meteor streams are in the same orbit as
a known comet, so at least some meteoroids are of
cometary origin. Near a perihelion passage, every
second several tons of gravel is left on the orbit of
a comet. There are several examples of meteorites
that have their origin in the Moon or Mars. De-
bris of large impacts may have been ejected into
space and finally ended up on the Earth. Some
meteoroids are debris of asteroids.

8.14 Interplanetary Dust and Other

Particles

Two faint light phenomena, namely zodiacal light
and gegenschein (counterglow) make it possible
to observe interplanetary dust, small dust parti-
cles reflecting the light of the Sun. This weak
glow can be seen above the rising or setting
Sun (zodiacal light) or exactly opposite the Sun
(gegenschein). The interplanetary dust is concen-
trated near the plane of the ecliptic. The typ-
ical sizes of the particles are in the range of
10-100 pm.

Solar Wind Elementary particles hitting the
Earth originate both in the Sun and outside the
solar system. Charged particles, mainly protons,

electrons and alpha particles (helium nuclei) flow
continuously out of the Sun. At the distance of
the Earth, the average speed of this solar wind is
about 500 km/s. The velocity and number of par-
ticles depend on eruptions and activity of the Sun
(Sects. 13.3 and 13.4).

The charged particles interact with the solar
magnetic field. The strength of the solar magnetic
field at the Earth’s distance is about 1/1000 of
that of the Earth. Particles coming from outside
the solar system are called cosmic rays, which
contain both elementary particles and heavier nu-
clei.

8.15 Examples

Example 8.1 (The Roche Limit) A French math-
ematician Edouard Roche computed in 1848
a limit where a moon will be torn apart due to
the tidal forces if it approaches its parent planet.
Roche proposed that the Saturnian rings were
formed in that way.

We can compute the Roche limit for a body at
a distance R of a planet the mass of which is M
approximating the body with two small spheres
of radius » and mass m. The difference of grav-
itation affecting the small spheres by the planet
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is

AF=GMm ! — !
(R—r)? (R+r)?
4r

rGMm—.
R3

=
Ry

The gravitational force between the small spheres
is

. Gm?

=
If AF > F’, the small spheres will be pulled
apart. The forces are equal at the Roche limit:

4r  Gm?
GMm— = ——.
R3 452

Thus the distance of the Roche limit R is

3 16r3M
R=7/ .
m

Inserting the masses of the planet and the spheres
in terms of the radii of the planet S and spheres r,
and assuming that the densities p are equal, m =

4 3 4_a3 :
3P, M = §7TS p, we obtain

R~25xS.

Our result is valid only for a body without any
internal strength. Smaller bodies with internal
strength can survive inside the Roche limit. You,
dear reader, act as an excellent example of this,
because you read this example well inside the
Roche limit of the Earth. A 100 km stony asteroid
will survive even if it orbits the Earth just above
the atmosphere but a sphere of water of the same
size would break apart.

8.16 Exercises

Exercise 8.1 The interval between two opposi-
tions of a planet was 398.9 d. The angular di-

ameter of the planet at the opposition was 47.2".
Find the sidereal period, semimajor axis, and the
true diameter (in kilometres) of the planet. Which
planet was it?

Exercise 8.2 (a) Assume that three bodies move
along circular orbits with angular velocities (mean
motions) ni, no and n3. Show that these bodies
have a common synodic period if and only if there
are nonzero integers ki, k; and k3 such that

kiny +kony +ksn3 =0, ki +ky+k3=0.

(b) The resonance of the Galilean satellites can
be expressed in terms of their mean motions as

nlo — 3”Europa + 2”Ganymede =0.

Find the synodic period of these three moons.

Exercise 8.3 The rotation period of Mars is
24.62 hours and the orbital period of Deimos
30.30 hours. How long is the time between two
successive risings of Deimos and how much
Deimos moves in one hour as seen from Mars?

Exercise 8.4 Find the distance of the Roche
limit for all planets and see if any of their moons
is orbiting the limit. And how are the rings of gi-
ant planets situated relative to the Roche limit?

Exercise 8.5 Assume that the hydrogen atom is
a solid sphere with a radius of 5.3 x 10~ m (the
Bohr radius) and mass 1.67 x 10727 kg. Use such
balls to build a regular (infinite) grid where each
ball is touching its six neighbours. What is the
density of such matter? Compare with the density
of Jupiter.



Stellar Spectra

All our information about the physical proper-
ties of stars comes more or less directly from
studies of their spectra. In particular, by study-
ing the strength of various absorption lines, stel-
lar masses, temperatures and compositions can be
deduced. The line shapes contain detailed infor-
mation about atmospheric processes.

As we have seen in Chap. 3, the light of a star
can be dispersed into a spectrum by means of
a prism or a diffraction grating. The distribution
of the energy flux density over frequency can then
be derived. The spectra of stars consist of a con-
tinuous spectrum or continuum with narrow spec-
tral lines superimposed (Fig. 9.1). The lines in
stellar spectra are mostly dark absorption lines,
but in some objects bright emission lines also oc-
cur.

In a very simplified way the continuous spec-
trum can be thought of as coming from the hot
surface of the star. Atoms in the atmosphere
above the surface absorb certain characteristic
wavelengths of this radiation, leaving dark “gaps”
at the corresponding points in the spectrum. In
reality there is no such sharp separation between
surface and atmosphere. All layers emit and ab-
sorb radiation, but the net result of these pro-
cesses is that less energy is radiated at the wave-
lengths of the absorption lines.

The spectra of stars are classified on the ba-
sis of the strengths of the spectral lines. Isaac
Newton observed the solar spectrum in 1666, but,
properly speaking, spectroscopy began in 1814
when Joseph Fraunhofer observed the dark lines
in the spectrum of the Sun. He assigned capi-
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tal letters, like D, G, H and K, to some of the
stronger dark lines without knowing the elements
responsible for the origin of the lines (Sect. 9.2).
The absorption lines are also known as Fraun-
hofer lines. In 1860, Gustav Robert Kirchhoff and
Robert Bunsen identified the lines as the charac-
teristic lines produced by various elements in an
incandescent gas.

9.1 Measuring Spectra

The most important methods of forming a spec-
trum are by means of an objective prism or a slit
spectrograph. In the former case one obtains
a photograph, where each stellar image has been
spread into a spectrum. Up to several hundred
spectra can be photographed on a single plate
and used for spectral classification. The amount
of detail that can be seen in a spectrum depends
on its dispersion, the range of wavelengths per
millimetre on the plate (or per pixel on a CCD).
The dispersion of an objective prism is a few
tens of nanometres per millimetre. More detailed
observations require a slit spectrograph, which
can reach a dispersion 1-0.01 nm/mm. The de-
tailed shape of individual spectral lines can then
be studied.

The photograph of the spectrum is converted
to an intensity tracing showing the flux density as
a function of wavelength. This is done by means
of a microdensitometer, measuring the amount of
light transmitted by the recorded spectrum. Since
the blackening of a photographic plate is not lin-
early related to the amount of energy it has re-
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Fig.9.1 A typical stellar spectrum. The continuous spec-
trum is brightest at about 550 nm and gets fainter towards
shorter and longer wavelengths. Dark absorption lines are

superimposed on the continuum. The spectrum of the star,
n Pegasi, is very similar to that of our Sun. (Mt. Wilson
Observatory)
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Fig. 9.2 (a) A section of a photograph of a stellar spec-
trum and the corresponding rectified microdensitometer
intensity tracing. The original spectrum was taken at the
Crimean Observatory. (b) A more extensive part of the

ceived, the measured blackening has to be cali-
brated by comparison with known exposures.

Nowadays CCD cameras are used also in spec-
trographs and the intensity curve is determined
directly without the intervening step of a pho-
tographic plate. Some image processing is still
needed since the height of the spectrum is sev-
eral pixels and the spectrum may not be aligned
with the pixel rows of the camera.

For measurements of line strengths the spec-
trum is usually rectified by dividing by the con-
tinuum intensity. Figure 9.2 shows a photograph
of the spectrum of a star and the intensity curve
obtained from a calibrated and rectified micro-

Wavelength [nm]

spectrum. (c¢) The picture the intensity curve of the first
picture has been rectified by normalising the value of the
continuum intensity to one. (Pictures by J. Kyr6ldinen and
H. Virtanen, Helsinki Observatory)

densitometer tracing. The second pair of pic-
tures shows the intensity curve before and after
the normalisation. The absorption lines appear as
troughs of various sizes in the curve. In addition
to the clear and deep lines, there are large num-
bers of weaker lines that can barely be discerned.
The graininess of the photographic emulsion is
a source of noise which appears as irregular fluc-
tuations of the intensity curve. Some lines are so
close together that they appear blended at this dis-
persion.

The detailed shape of a spectral line is called
the line profile (Sect. 5.3). The true shape of the
line reflects the properties of the stellar atmo-
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sphere, but the observed profile is also spread out
by the measuring instrument. However, the total
absorption in the line, usually expressed in terms
of the equivalent width, is less sensitive to obser-
vational effects (see Fig. 5.6).

The equivalent width of a spectral line de-
pends on how many atoms in the atmosphere are
in a state in which they can absorb the wave-
length in question. The more atoms there are, the
stronger and broader the spectral line is. For ex-
ample, a typical equivalent width of a metal line
(Fe) in the solar spectrum is about 10 pm. Line
widths are often expressed in dngstroms (1 A =
10719 m =0.1 nm).

Only in weak lines the equivalent width de-
pends linearly on the number of absorbing atoms.
The equivalent width as a function of the amount
of absorbing atoms is known as the curve of
growth. It is, however, beyond the scope of this
book.

Line profiles are also broadened by the Dopp-
ler effect. In stellar atmospheres there are motions
of small and large scale, like thermal motion of
the atoms and convective flows.

The chemical composition of the atmosphere
can be determined from the strengths of the spec-
tral lines. With the introduction of large com-
puters it has become feasible to construct quite
detailed models of the structure of stellar atmo-
spheres, and to compute the emergent spectrum
for a given model. The computed synthetic spec-
trum can be compared with the observations and
the theoretical model modified until a good fit
is obtained. The theoretical models then give the
number of absorbing atoms, and hence the ele-
ment abundances, in the atmosphere. The con-
struction of model atmospheres will be discussed
in Sect. 9.6.

9.2 The Harvard Spectral

Classification

The spectral classification scheme in present use
was developed at Harvard Observatory in the
United States in the early 20th century. The work
was begun by Henry Draper who in 1872 took
the first photograph of the spectrum of Vega.
Later Draper’s widow donated the observing

equipment and a sum of money to Harvard Ob-
servatory to continue the work of classification.
The main part of the classification was done by
Annie Jump Cannon using objective prism spec-
tra. The Henry Draper Catalogue (HD) was pub-
lished in 1918-1924. It contains 225,000 stars ex-
tending down to 9 magnitudes. Altogether more
than 390,000 stars were classified at Harvard.
The Harvard classification is based on lines
that are mainly sensitive to the stellar tempera-
ture, rather than to gravity or luminosity. Impor-
tant lines are the hydrogen Balmer lines, the lines
of neutral helium, the iron lines, the H and K dou-
blet of ionised calcium at 396.8 and 393.3 nm,
the G band due to the CH molecule and some
metals around 431 nm, the neutral calcium line at
422.7 nm and the lines of titanium oxide (TiO).
The main types in the Harvard classification
are denoted by capital letters. They were ini-
tially ordered in alphabetical sequence, but subse-
quently it was noticed that they could be ordered
according to temperature. With the temperature
decreasing towards the right the sequence is

C
O-B-A-F-G-K-M-L-T.
S

Additional notations are Q for novae, P for plan-
etary nebulae and W for Wolf—-Rayet stars. The
class C consists of the earlier types R and N.
The spectral classes C and S represent parallel
branches to types G-M, differing in their surface
chemical composition. The most recent addition
are the spectral classes L and T continuing the
sequence beyond M, representing brown dwarfs.
There is a well-known mnemonic for the spectral
classes, but due to its chauvinistic tone we refuse
to tell it.

The spectral classes are divided into sub-
classes denoted by the numbers 0, ..., 9; some-
times decimals are used, e.g. B0.5 (Figs. 9.3
and 9.4).

Classes at the beginning of the sequence are
sometimes called early classes and those at the
end of the sequence late classes. This is no way
related to stellar evolution; it only reflects the po-
sition in the sequence O-B—A-F-G—K-M.
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Fig. 9.3 Spectra of early and late spectral type stars be-
tween 375 and 390 nm. (a) The upper star is Vega, of
spectral type AO, and (b) the lower one is Aldebaran, of

Spectra of brown dwarfs are shown in Fig. 9.4
and compared with those of M dwarfs.

The main characteristics of the different classes
are:

O Blue stars, surface temperature 20,000—
35,000 K. Spectrum with lines from multiply
ionised atoms, e.g. Hell, CIII, NIII, OIII,
Si V. Hel visible, HI lines weak.

Blue-white stars, surface temperature about
15,000 K. HeII lines have disappeared, He I
(403 nm) lines are strongest at B2, then get
weaker and have disappeared at type B9. The
K line of Call becomes visible at type B3.
H I lines getting stronger. O I, Sill and MgII
lines visible.

White stars, surface temperature about
9000 K. The HI lines are very strong at
A0 and dominate the whole spectrum, then
get weaker. H and K lines of Call getting
stronger. He I no longer visible. Neutral metal
lines begin to appear.

Yellow-white stars, surface temperature about
7000 K. HI lines getting weaker, H and K of
Call getting stronger. Many other metal lines,
e.g. Fel, Fell, Crll, Till, clear and getting
stronger.

Yellow stars like the Sun, surface tempera-
ture about 5500 K. The HI lines still getting
weaker, H and K lines very strong, strongest
at GO. Metal lines getting stronger. G band
clearly visible. CN lines seen in giant stars.
Orange-yellow stars, surface temperature
about 4000 K. Spectrum dominated by metal
lines. HI lines insignificant. Cal 422.7 nm
clearly visible. Strong H and K lines and
G band. TiO bands become visible at KS.

O (W 7V

spectral type KS. The hydrogen Balmer lines are strong in
the spectrum of Vega; in that of Aldebaran, there are many
metal lines. (Lick Observatory)

M Red stars, surface temperature about 3000 K.
TiO bands getting stronger. Cal 422.7 nm
very strong. Many neutral metal lines.

Brown (actually dark red) stars, surface tem-
perature about 2000 K. The TiO and VO
bands disappear for early L class. Very strong
and broad lines of Nal and K 1.

Brown dwarfs, surface temperature about
1000 K. Very strong molecular absorption
bands of CH4 and H,O.

Carbon stars, previously R and N. Very red
stars, surface temperature about 3000 K.
Strong molecular bands, e.g. C,, CN and CH.
No TiO bands. Line spectrum like in the types
K and M.

Red low-temperature stars (about 3000 K).
Very clear ZrO bands. Also other molecular
bands, e.g. YO, LaO and TiO.

The main characteristics of the classification
scheme can be seen in Fig. 9.5 showing the vari-
ations of some typical absorption lines in the dif-
ferent spectral classes. Different spectral features
are mainly due to different effective temperatures.
Different pressures and chemical compositions of
stellar atmospheres are not very important factors
in the spectral classification, except in some pe-
culiar stars.

The early, i.e. hot, spectral classes are char-
acterised by the lines of ionised atoms, whereas
the cool, or late, spectral types have lines of neu-
tral atoms. In hot stars molecules dissociate into
atoms; thus the absorption bands of molecules ap-
pear only in the spectra of cool stars of late spec-
tral types.

To see how the strengths of the spectral lines
are determined by the temperature, we consider,
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Fig. 9.4 (a) Intensity curves for various spectral classes
showing characteristic spectral features. The name of the
star and its spectral and luminosity class are given next
to each curve, and the most important spectral features
are identified. (Drawing by J. Dufay.) (b) Optical spec-

for example, the neutral helium lines at 402.6 nm
and 447.2 nm. These are only seen in the spec-
tra of hot stars. The reason for this is that the
lines are due to absorption by excited atoms,

tra of M stars and brown dwarfs. In an approximate sense,
the brown dwarfs continue the spectral sequence towards
lower temperatures, although in many respects they dif-
fer from the earlier spectral types. (J.D. Kirkpatrick 2005,
ARAA 43, 205)

and that a high temperature is required to pro-
duce any appreciable excitation. As the stellar
temperature increases, more atoms are in the re-
quired excited state, and the strength of the he-
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Fig. 9.5 Equivalent
widths of some important

Temperature

som ! 25,000
spectral lines in the various T

spectral classes. [Struve, O.
(1959): Elementary
Astronomy (Oxford
University Press, New
York) p. 259]
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lium lines increases. When the temperature be-
comes even higher, helium begins to be ionised,
and the strength of the neutral helium lines be-
gins to decrease. In a similar way one can under-
stand the variation with temperature of other im-
portant lines, such as the calcium H and K lines.
These lines are due to singly ionised calcium, and
the temperature must be just right to remove one
electron but no more.

The hydrogen Balmer lines Hg, H,, and Hs are
strongest in the spectral class A2. These lines cor-
respond to transitions to the level the principal
quantum number of which is n = 2. If the tem-
perature is too high the hydrogen is ionised and
such transitions are not possible.

9.3 The Yerkes Spectral

Classification

The Harvard classification only takes into ac-
count the effect of the temperature on the spec-
trum. For a more precise classification, one also
has to take into account the luminosity of the star,
since two stars with the same effective tempera-
ture may have widely different luminosities.

A two-dimensional system of spectral classi-
fication was introduced by William W. Morgan,
Philip C. Keenan and Edith Kellman of Yerkes
Observatory. This system is known as the MKK
or Yerkes classification. (The MK classification is
a modified, later version.) The MKK classifica-
tion is based on the visual scrutiny of slit spec-
tra with a dispersion of 11.5 nm/mm. It is care-
fully defined on the basis of standard stars and the

FO GO

K0 MO

Spectral class

specification of luminosity criteria. Six different
luminosity classes are distinguished:

— Ia most luminous supergiants,
Ib less luminous supergiants,

II luminous giants,

III normal giants,

— IV subgiants,

V main sequence stars (dwarfs).

The luminosity class is denoted by a Roman
numeral after the spectral class. For example, the
class of the Sunis G2 V.

The luminosity class is determined from spec-
tral lines that depend strongly on the stellar sur-
face gravity, which is closely related to the lu-
minosity. The masses of giants and dwarfs are
roughly similar, but the radii of giants are much
larger than those of dwarfs. Therefore the grav-
itational acceleration g = GM/R? at the surface
of a giant is much smaller than for a dwarf. In
consequence, the gas density and pressure in the
atmosphere of a giant is much smaller. This gives
rise to luminosity effects in the stellar spectrum,
which can be used to distinguish between stars of
different luminosities.

1. For spectral types B—F, the lines of neutral hy-
drogen are deeper and narrower for stars of
higher luminosities. The reason for this is that
the metal ions give rise to a fluctuating elec-
tric field near the hydrogen atoms. This field
leads to shifts in the hydrogen energy levels
(the Stark effect), appearing as a broadening
of the lines. The effect becomes stronger as
the density increases. Thus the hydrogen lines
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Fig. 9.6 Luminosity
effects in the hydrogen H,,
line in A stars. The vertical
axis gives the normalised
intensity. HD 223385
(upper left) is an

A2 supergiant, where the
line is very weak,

6 Aurigae A is a giant star
and > Geminorum is

a main sequence star,
where the line is very
broad. [Aller, L.H. (1953):
Astrophysics. The
Atmospheres of the Sun
and Stars (The Ronald
Press Company, New York)
p. 318]
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are narrow in absolutely bright stars, and be-
come broader in main sequence stars and even
more so in white dwarfs (Fig. 9.6).

. The lines from ionised elements are relatively
stronger in high-luminosity stars. This is be-
cause the higher density makes it easier for
electrons and ions to recombine to neutral
atoms. On the other hand, the rate of ionisa-
tion is essentially determined by the radiation
field, and is not appreciably affected by the gas
density. Thus a given radiation field can main-
tain a higher degree of ionisation in stars with
more extended atmospheres. For example, in
the spectral classes F-G, the relative strengths
of the ionised strontium (Sr II) and neutral iron
(Fe) lines can be used as a luminosity indica-

tor. Both lines depend on the temperature in
roughly the same way, but the Sr1I lines be-
come relatively much stronger as the luminos-
ity increases.

. Giant stars are redder than dwarfs of the same

spectral type. The spectral type is determined
from the strengths of spectral lines, including
ion lines. Since these are stronger in giants,
a giant will be cooler, and thus also redder,
than a dwarf of the same spectral type.

. There is a strong cyanogen (CN) absorption

band in the spectra of giant stars, which is al-
most totally absent in dwarfs. This is partly
a temperature effect, since the cooler atmo-
spheres of giants are more suitable for the for-
mation of cyanogen.
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Fig. 9.7 Peculiar spectra. (a) R Geminorum (above) is an
emission line star, with bright emission lines, indicated by
arrows, in its spectrum; (b) the spectrum of a normal star

9.4  Peculiar Spectra

The spectra of some stars differ from what one
would expect on the basis of their temperature
and luminosity (see, e.g., Fig. 9.7). Such stars are
celled peculiar. The most common peculiar spec-
tral types will now be considered.

The Wolf-Rayet stars are very hot stars; the
first examples were discovered by Charles Wolf
and Georges Rayet in 1867. The spectra of Wolf—
Rayet stars have broad emission lines of hydro-
gen and ionised helium, carbon, nitrogen and
oxygen. There are hardly any absorption lines.
The Wolf-Rayet stars are thought to be very
massive stars that have lost their outer layers in
a strong stellar wind. This has exposed the stellar
interior, which gives rise to a different spectrum
than the normal outer layers. Many Wolf-Rayet
stars are members of binary systems.

In some O and B stars the hydrogen absorp-
tion lines have weak emission components ei-
ther at the line centre or in its wings. These stars
are called Be and shell stars (the letter e after
the spectral type indicates that there are emis-
sion lines in the spectrum). The emission lines
are formed in a rotationally flattened gas shell
around the star. The shell and Be stars show ir-
regular variations, apparently related to structural
changes in the shell. About 15 % of all O and
B stars have emission lines in their spectra.

is compared with one in which the zirconium lines are un-
usually strong. (Mt. Wilson Observatory and Helsinki Ob-
servatory)

The strongest emission lines are those of the
P Cygni stars, which have one or more sharp ab-
sorption lines on the short wavelength side of
the emission line. It is thought that the lines
are formed in a thick expanding envelope. The
PCygni stars are often variable. For example,
P Cygni itself has varied between three and six
magnitudes during the past centuries. At present
its magnitude is about 5.

The peculiar A stars or Ap stars (p = peculiar)
are usually strongly magnetic stars, where the
lines are split into several components by the
Zeeman effect. The lines of certain elements,
such as magnesium, silicon, europium, chromium
and strontium, are exceptionally strong in the Ap
stars. Lines of rarer elements such as mercury,
gallium or krypton may also be present. Other-
wise, the Ap stars are like normal main sequence
stars.

The Am stars (m = metallic) also have anoma-
lous element abundances, but not to the same ex-
tent as the Ap stars. The lines of e.g. the rare
earths and the heaviest elements are strong in
their spectra; those of calcium and scandium are
weak.

We have already mentioned the S and C stars,
which are special classes of K and M giants with
anomalous element abundances. In the S stars,
the normal lines of titanium, scandium and vana-
dium oxide are replaced with oxides of heavier
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Fig.9.8 The Hertzsprung—Russell diagram. The horizon-
tal coordinate can be either the colour index B — V, ob-
tained directly from observations, or the spectral class. In
theoretical studies the effective temperature 7 is com-
monly used. These correspond to each other but the depen-
dence varies somewhat with luminosity. The vertical axis
gives the absolute magnitude. In a (Ig(L/Lg),1g Te) plot
the curves of constant radius are straight lines. The dens-

elements, zirconium, yttrium and barium. A large
fraction of the S stars are irregular variables. The
name of the C stars refers to carbon. The metal
oxide lines are almost completely absent in their
spectra; instead, various carbon compounds (CN,
C,, CH) are strong. The abundance of carbon rel-
ative to oxygen is 4-5 times greater in the C stars
than in normal stars. The C stars are divided into
two groups, hotter R stars and cooler N stars.

Another type of giant stars with abundance
anomalies are the barium stars. The lines of bar-
ium, strontium, rare earths and some carbon com-
pounds are strong in their spectra. Apparently nu-
clear reaction products have been mixed up to the
surface in these stars.

est areas are the main sequence and the horizontal, red gi-
ant and asymptotic branches consisting of giant stars. The
supergiants are scattered above the giants. To the lower
left are some white dwarfs about 10 magnitudes below the
main sequence. The apparently brightest stars (m < 4) are
marked with crosses and the nearest stars (r < 50 ly) with
dots. The data are from the Hipparcos catalogue

9.5 The Hertzsprung-Russell

Diagram

Around 1910, Ejnar Hertzsprung and Henry Nor-
ris Russell studied the relation between the abso-
lute magnitudes and the spectral types of stars.
The diagram showing these two variables is now
known as the Hertzsprung—Russell diagram or
simply the HR diagram (Fig. 9.8). It has turned
out to be an important aid in studies of stellar evo-
lution.

In view of the fact that stellar radii, luminosi-
ties and surface temperatures vary widely, one
might have expected the stars to be uniformly dis-
tributed in the HR diagram. However, it is found
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that most stars are located along a roughly diag-
onal curve called the main sequence. The Sun is
situated about the middle of the main sequence.

The HR diagram also shows that the yellow
and red stars (spectral types G-K-M) are clus-
tered into two clearly separate groups: the main
sequence of dwarf stars and the giants. The gi-
ant stars fall into several distinct groups. The
horizontal branch is an almost horizontal se-
quence, about absolute visual magnitude zero.
The red giant branch rises almost vertically from
the main sequence at spectral types K and M in
the HR diagram. Finally, the asymptotic branch
rises from the horizontal branch and approaches
the bright end of the red giant branch. These var-
ious branches represent different phases of stellar
evolution (cf. Sects. 12.3 and 12.4): dense areas
correspond to evolutionary stages in which stars
stay a long time.

A typical horizontal branch giant is about
a hundred times brighter than the Sun. Since gi-
ants and dwarfs of the same spectral class have
nearly the same surface temperature, the differ-
ence in luminosity must be due to a difference in
radius according to (5.21). For example Arcturus,
which is one of the brightest stars in the sky, has
a radius about thirty times that of the Sun.

The brightest red giants are the supergiants
with magnitudes up to My = —7. One example
is Betelgeuze. in Orion, with a radius of 400 so-
lar radii and 20,000 times more luminous than the
Sun.

About 10 magnitudes below the main se-
quence are the white dwarfs. They are quite nu-
merous in space, but faint and difficult to find.
The best-known example is Sirius B, the com-
panion of Sirius.

There are some stars in the HR diagram
which are located below the giant branch, but
still clearly above the main sequence. These are
known as subgiants. Similarly, there are stars
below the main sequence, but brighter than the
white dwarfs, known as subdwarfs.

When interpreting the HR diagram, one has
to take into account selection effects: absolutely
bright stars are more likely to be included in the
sample, since they can be discovered at greater
distances. If only stars within a certain distance

from the Sun are included, the distribution of
stars in the HR diagram looks quite different. This
can be seen in Fig. 9.8: there are no giant or bright
main sequence stars among these.

The HR diagrams of star clusters are particu-
larly important for the theory of stellar evolution.
They will be discussed in Chap. 17.

9.6 Model Atmospheres

The stellar atmosphere consists of those layers of
the star where the radiation that is transmitted di-
rectly to the observer originates. Thus in order to
interpret stellar spectra, one needs to be able to
compute the structure of the atmosphere and the
emerging radiation.

In actual stars there are many factors, such as
rotation and magnetic fields, that complicate the
problem of computing the structure of the atmo-
sphere. We shall only consider the classical prob-
lem of finding the structure, i.e. the distribution of
pressure and temperature with depth, in a static,
unmagnetised atmosphere. In that case a model
atmosphere is completely specified by giving the
chemical composition, the gravitational acceler-
ation at the surface, g, and the energy flux from
the stellar interior, or equivalently, the effective
temperature 7.

The basic principles involved in computing
a model stellar atmosphere are the same as for
stellar interiors and will be discussed in Chap. 11.
Essentially, there are two differential equations
to be solved: the equation of hydrostatic equilib-
rium, which fixes the distribution of pressure, and
an equation of energy transport, which will have
a different form depending on whether the atmo-
sphere is radiative or convective, and which de-
termines the temperature distribution.

The values of the various physical quantities
in an atmosphere are usually given as functions of
some suitably defined continuum optical depth 7.
Thus pressure, temperature, density, ionisation
and the population numbers of various energy
levels can all be obtained as functions of . When
these are known, the intensity of radiation emerg-
ing from the atmosphere can be computed. In
Box 9.1, it is shown that approximately the emer-
gent spectrum originates at unit optical depth,
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measured along each light ray. On this basis, one
can predict whether a given spectral line will be
present in the spectrum.

Consider a spectral line formed when an atom
(or ion) in a given energy state absorbs a photon.
From the model atmosphere, the occupation num-
ber of the absorbing level is known as a function
of the (continuum) optical depth 7. If now there
is a layer above the depth v = 1 where the ab-
sorbing level has a high occupancy, the optical
depth in the line will become unity before 7 =1,
i.e. the radiation in the line will originate higher
in the atmosphere. Because the temperature in-
creases inwards, the intensity in the line will cor-
respond to a lower temperature, and the line will
appear dark. On the other hand, if the absorbing
level is unoccupied, the optical depth at the line
frequency will be the same as the continuum op-
tical depth. The radiation at the line frequency
will then come from the same depth as the ad-
jacent continuum, and no absorption line will be
formed.

The expression for the intensity derived in
Box 9.1 also explains the phenomenon of limb
darkening seen in the Sun (Sect. 12.2). The radia-
tion that reaches us from near the edge of the solar
disk emerges at a very oblique angle (6 near 90°),
i.e. cos 6 is small. Thus this radiation originates at
small values of t, and hence at low temperatures.
In consequence, the intensity coming from near
the edge will be lower, and the solar disk will ap-
pear darker towards the limb. The amount of limb
darkening also gives an empirical way of deter-
mining the temperature distribution in the solar
atmosphere.

Our presentation of stellar atmospheres has
been highly simplified. In practice, the spectrum
is computed numerically for a range of parameter
values. The values of T, and element abundances
for various stars can then be found by comparing
the observed line strengths and other spectral fea-
tures with the theoretical ones. We shall not go
into details on the procedures used.

9.7 What Do the Observations Tell

Us?

To conclude this chapter, we shall give a sum-
mary of the properties of stars revealed by the ob-

servations. At the end of the book, there are tables
of the brightest and of the nearest stars.

Of the brightest stars, four have a negative
magnitude. Some of the apparently bright stars
are absolutely bright supergiants, others are sim-
ply nearby.

In the list of the nearest stars, the dominance of
faint dwarf stars, already apparent in the HR dia-
gram, is worth noting. Most of these belong to the
spectral types K and M. Some nearby stars also
have very faint companions with masses about
that of Jupiter, i.e. planets. They have not been
included in the table.

Stellar spectroscopy offers an important way
of determining fundamental stellar parameters, in
particular mass and radius. However, the spec-
tral information needs to be calibrated by means
of direct measurements of these quantities. These
will be considered next.

The masses of stars can be determined in the
case of double stars orbiting each other. (The de-
tails of the method will be discussed in Chap. 9.)
These observations have shown that the larger
the mass of a main sequence star becomes, the
higher on the main sequence it is located. One
thus obtains an empirical mass—luminosity rela-
tion, which can be used to estimate stellar masses
on the basis of the spectral type.

The observed relation between mass and lu-
minosity is shown in Fig. 9.9. The luminosity is
roughly proportional to the power 3.8 of the mass:

Lo M8, 9.1)

The relations is only approximate. According to
it, a ten solar mass star is about 6300 times
brighter than the Sun, corresponding to 9.5 mag-
nitudes.

The smallest observed stellar masses are about
1/20 of the solar mass, corresponding to stars in
the lower right-hand part of the HR diagram. The
masses of white dwarfs are less than one solar
mass. The masses of the most massive main se-
quence and supergiant stars are between 10 and
possibly even 150 M.

Direct interferometric measurements of stel-
lar angular diameters have been made for only
a few dozen stars. When the distances are known,
these immediately yield the value of the radius. In
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eclipsing binaries, the radius can also be directly
measured (see Sect. 10.4). Altogether, close to
a hundred stellar radii are known from direct
measurements. In other cases, the radius must be
estimated from the absolute luminosity and effec-
tive temperature.

In discussing stellar radii, it is convenient to
use a version of the HR diagram with 1g 7 on the
horizontal and My or 1g(L/Lg) on the vertical
axis. If the value of the radius R is fixed, then
(5.21) yields a linear relation between the bolo-
metric magnitude and 1g 7. Thus lines of con-
stant radius in the HR diagram are straight. Lines
corresponding to various values of the radius are
shown in Fig. 9.8. The smallest stars are the white
dwarfs with radii of about one per cent of the so-
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Fig. 9.9 Mass—luminosity relation. The picture is based
on binaries with known masses. Different symbols refer
to different kinds of binaries. (From Bohm-Vitense: In-
troduction to Stellar Astrophysics, Cambridge University
Press (1989-1992))

lar radius, whereas the largest supergiants have
radii several thousand times larger than the Sun.
Not included in the figure are the compact stars
(neutron stars and black holes) with typical radii
of a few tens of kilometres.

Since the stellar radii vary so widely, so do
the densities of stars. The density of giant stars
may be only 10™* kg/m?>, whereas the density of
white dwarfs is about 10° kg/m?>.

The range of values for stellar effective tem-
peratures and luminosities can be immediately
seen in the HR diagram. The range of effective
temperature is 2000—40,000 K, and that of lumi-
nosity 1074-10° L.

The rotation of stars appears as a broadening
of the spectral lines. One edge of the stellar disk
is approaching us, the other edge is receding, and
the radiation from the edges is Doppler shifted
accordingly. The rotational velocity observed in
this way is only the component along the line of
sight. The true velocity is obtained by dividing
with sini, where i is the angle between the line
of sight and the rotational axis. A star seen from
the direction of the pole will show no rotation.

Assuming the axes of rotation to be randomly
oriented, the distribution of rotational velocities
can be statistically estimated. The hottest stars
appear to rotate faster than the cooler ones. The
rotational velocity at the equator varies from
200-250 km/s for O and B stars to about 20 km/s
for spectral type G. In shell stars, the rotational
velocity may reach 500 km/s.

The chemical composition of the outer layers
is deduced from the strengths of the spectral lines.
About three-fourths of the stellar mass is hy-
drogen. Helium comprises about one-fourth, and
the abundance of other elements is very small.
The abundance of heavy elements in young stars
(about 2 %) is much larger than in old ones,
where it is less than 0.02 %.

Box 9.1 (The Intensity Emerging from a Stellar
Atmosphere) The intensity of radiation emerg-
ing from an atmosphere is given by the expres-
sion (5.45), i.e.

o0
1,(0,0) =/ Sy (ty) e gec 0 dr,,.
0
9.2)
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If a model atmosphere has been computed, the
source function S, is known.

An approximate formula for the intensity
can be derived as follows. Let us expand the
source function as a Taylor series about some
arbitrary point ¥, thus

Sy=8(t") + (v —T")S,(z*) + -

where the dash denotes a derivative. With this
expression, the integral in (9.2) can be evalu-
ated, yielding

1,(0,0) = Sy (t*) + (cos® — ) S, (t*) + - --

If we now choose 7* = cos@, the second
term will vanish. In local thermodynamic

0L L

equilibrium the source function will be the
Planck function B,(T). We thus obtain the
Eddington—Barbier approximation

1,(0,0) = B, (T[r, = cosb]).

According to this expression, the radiation
emerging in a given direction originated at unit
optical depth along that direction.

9.8 Exercise

Exercise 9.1 Arrange the below spectra in the
order of decreasing temperature.

T I . L]




Binary Stars and Stellar Masses

Quite often, two stars may appear to be close to-
gether in the sky, although they are really at very
different distances. Such chance pairs are called
optical binary stars. However, many close pairs
of stars really are at the same distance and form
a physical system in which two stars are orbit-
ing around each other. Less than half of all stars
are single stars like the Sun. More than 50 % be-
long to systems containing two or more members.
In general, the multiple systems have a hierarchi-
cal structure: a star and a binary orbiting around
each other in triple systems, two binaries orbit-
ing around each other in quadruple systems. Thus
most multiple systems can be described as bina-
ries with several levels.

Binaries are classified on the basis of the
method of their discovery. This classification has
nothing to do with the physical properties of the
stars. Visual binaries can be seen as two sepa-
rate components, i.e. the separation between the
stars is larger than about 0.1 arc seconds. The rel-
ative position of the components changes over the
years as they move in their orbits (Fig. 10.1). In
astrometric binary stars only one component is
seen, but its variable proper motion shows that
a second invisible component must be present.
The spectroscopic binary stars are discovered on
the basis of their spectra. Either two sets of spec-
tral lines are seen or else the Doppler shift of the
observed lines varies periodically, indicating an
invisible companion. The fourth class of bina-
ries are the photometric binary stars or eclips-
ing variables. In these systems the components
of the pair regularly pass in front of each other,

© Springer-Verlag Berlin Heidelberg 2017

causing a change in the total apparent magni-
tude.

Binary stars can also be classified on the ba-
sis of their mutual separation. In distant binaries
the separation between the components is tens or
hundreds of astronomical units and their orbital
periods are from tens to thousands of years. In
close binaries the separation is from about one
au down to the radius of the stars. The orbital pe-
riod ranges from a few hours to a few years. The
components of contact binaries are so close that
they are touching each other.

The stars in a binary system move in an ellipti-
cal orbit around the centre of mass of the system.
In Chap. 6 it was shown that the relative orbit, too,
is an ellipse, and thus the observations are often
described as if one component remained station-
ary and the other orbited around it.

10.1 Visual Binaries
We consider a visual binary, assuming initially
that the brighter primary component is station-
ary and the fainter secondary component is or-
biting around it. The angular separation of the
stars and the angular direction to the secondary
can be directly observed. Making use of observa-
tions extending over many years or decades, the
relative orbit of the secondary can be determined.
The first binary orbit to be determined was that of
& UMa in 1830 (Fig. 10.2).

The observations of visual binaries only give
the projection of the relative orbital ellipse on the
plane of the sky. The shape and position of the
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Fig. 10.1 When a visual
binary is followed for

a long time, the
components can be seen to
move with respect to each
other. Picture of Kriiger 60.
(Yerkes Observatory)
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Fig. 10.2 In 1830 the orbit of & Ursae Majoris was the
first binary orbit determined observationally

true orbit are not known. However, they can be
calculated if one makes use of the fact that the
primary should be located at a focal point of the
relative orbit. The deviation of the projected po-
sition of the primary from the focus of the pro-
jected relative orbit allows one to determine the
orientation of the true orbit.

The absolute size of the orbit can only be
found if the distance of the binary is known.
Knowing this, the total mass of the system can
be calculated from Kepler’s third law.

The masses of the individual components
can be determined by observing the motions of
both components relative to the centre of mass
(Fig. 10.3). Let the semimajor axes of the or-
bital ellipses of the primary and the secondary
be a; and a;. Then, according to the definition of
the centre of mass,

a_m (10.1)

10 Binary Stars and Stellar Masses

1920

Centre of mass

Fig. 10.3 The components of a binary system move
around their common centre of mass. Aj, Ay denote the
positions of the stars at a given time A, and similarly for
Band C

where m and m; are the component masses. The
semimajor axis of the relative orbit is

a=a| + ap. (10.2)
For example, the masses of the components of

& UMa have been found to be 1.3 and 1.0 solar
masses.

10.2 Astrometric Binary Stars

In astrometric binaries, only the orbit of the
brighter component about the centre of mass can
be observed. If the mass of the visible component
is estimated, e.g. from its luminosity, the mass of
the invisible companion can also be estimated.
The first astrometric binary was Sirius, which
in the 1830’s was observed to have an undulat-
ing proper motion. It was concluded that it had
a small companion, which was visually discov-
ered a few decades later (Figs. 10.4 and 15.1).
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The companion, Sirius B, was a completely new
type of object, a white dwarf (Sect. 15.1).

The proper motions of nearby stars have been
carefully studied in the search for planetary sys-
tems. Although e.g. Barnard’s star may have un-
seen companions, the existence of planetary sys-
tems around other stars was not established by
proper motion studies but with spectroscopic ob-
servations (Sect. 21.8).

10.3 Spectroscopic Binaries

The spectroscopic binaries (Fig. 10.5) appear as
single stars in even the most powerful telescopes,
but their spectra show a regular variation. The
first spectroscopic binary was discovered in the
1880’s, when it was found that the spectral lines
of { UMa or Mizar split into two at regular inter-
vals.

The Doppler shift of a spectral line is directly
proportional to the radial velocity. Thus the sep-

Fig. 10.4 The apparent
paths of Sirius and its
companion in the sky

aration of the spectral lines is largest when one
component is directly approaching and the other
is receding from the observer. The period of the
variation is the orbital period of the stars. Unfor-
tunately, there is no general way of determining
the position of the orbit in space. The observed
velocity v is related to the true velocity vy ac-
cording to

v = vgsini, (10.3)

where the inclination i is the angle between the
line of sight and the normal of the orbital plane.

Consider a binary where the components
move in circular orbits about the centre of mass.
Let the radii of the orbits be a; and ay. From the
definition of the centre of mass mia; = maay,
and writing a = aj + a», one obtains

amy

(10.4)

a)=——-.:
mi +my

Fig. 10.5 Spectrum of the spectroscopic binary « Arietis. In the upper spectrum the spectral lines are single, in the

lower one doubled. (Lick Observatory)
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The true orbital velocity is

2may
P 9

vo,1 =

where P is the orbital period. The observed or-
bital velocity according to (10.3) is thus

2may sini

= 10.5
V1 2 (10.5)

Substituting (10.4), one obtains

2mwa mypsini
N=—"7--—
P mi+my

Solving for a and substituting it in Kepler’s third
law, one obtains the mass function equation:

m% sin’i v]3P
= . (10.6)
(my+my)? 217G

If one component in a spectroscopic binary is
so faint that its spectral lines cannot be observed,
only P and v; are observed. Equation (10.6) then
gives the value of the mass function, which is
the expression on the left-hand side. Neither the
masses of the components nor the total mass can
be determined. If the spectral lines of both com-
ponents can be observed, v, is also known. Then
(10.5) gives

v aj
[
and furthermore the definition of the centre of
mass gives
mauv
m| = .
U1
When this is substituted in (10.6), the value of
my sin3 i, and correspondingly, m sind i , can be
determined. However, the actual masses cannot
be found without knowing the inclination.

The size of the binary orbit (the semimajor
axis a) is obtained from (10.5) apart from a fac-
tor sini. In general the orbits of binary stars are
not circular and the preceding expressions cannot
be applied as they stand. For an eccentric orbit,
the shape of the velocity variation departs more
and more from a simple sine curve as the ec-
centricity increases. From the shape of the veloc-
ity variation, both the eccentricity and the longi-

tude of the periastron can be determined. Know-
ing these, the mass function or the individual
masses can again be determined to within a fac-

tor sin3i.

10.4 Photometric Binary Stars

In the photometric binaries, a periodic variation
in the total brightness is caused by the motions
of the components in a double system. Usu-
ally the photometric binaries are eclipsing vari-
ables, where the brightness variations are due to
the components passing in front of each other.
A class of photometric binaries where there are
no actual eclipses are the ellipsoidal variables.
In these systems, at least one of the components
has been distorted into an ellipsoidal shape by the
tidal pull of the other one. At different phases of
the orbit, the projected surface area of the dis-
torted component varies. The surface temperature
will also be lower at the ends of the tidal bulges.
Together these factors cause a small variation in
brightness.

The inclination of the orbit of an eclipsing bi-
nary must be very close to 90°. These are the only
spectroscopic binaries for which the inclination is
known and thus the masses can be uniquely deter-
mined.

The variation of the magnitude of eclips-
ing variables as a function of time is called
the lightcurve. According to the shape of the
lightcurve, they are grouped into three main
types: Algol, B Lyrae and W Ursae Majoris type
(Fig. 10.6).

Algol Stars The Algol-type eclipsing variables
have been named after 8 Persei or Algol. During
most of the period, the lightcurve is fairly con-
stant. This corresponds to phases during which
the stars are seen separate from each other and
the total magnitude remains constant. There are
two different minima in the lightcurve, one of
which, the primary minimum, is usually much
deeper than the other one. This is due to the
brightness difference of the stars. When the larger
star, which is usually a cool giant, eclipses the
smaller and hotter component, there is a deep
minimum in the lightcurve. When the small,
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Fig. 10.6 Typical lightcurves and schematic views of Al-
gol, B Lyrae and W Ursae Majoris type binary systems.
The size of the Sun is shown for comparison

bright star passes across the disk of the giant, the
total magnitude of the system does not change
by much.

The shape of the minima depends on whether
the eclipses are partial or total. In a partial eclipse
the lightcurve is smooth, since the brightness
changes smoothly as the depth of the eclipse
varies. In a total eclipse there is an interval dur-
ing which one component is completely invis-
ible. The total brightness is then constant and
the lightcurve has a flat bottomed minimum. The

shape of the minima in Algol variables thus gives
information on the inclination of the orbit.

The duration of the minima depends on the ra-
tio of the stellar radii to the size of the orbit. If the
star is also a spectroscopic binary, the true dimen-
sions of the orbit can be obtained. In that case the
masses and the size of the orbit, and thus also the
radii can be determined without having to know
the distance of the system.

B Lyrae Stars In the 8 Lyrae-type binaries, the
total magnitude varies continuously. The stars are
so close to each other that one of them has been
pulled into ellipsoidal shape. Thus the brightness
varies also outside the eclipses. The 8 Lyrae vari-
ables can be described as eclipsing ellipsoidal
variables. In the g Lyrae system itself, one star
has overfilled its Roche lobe (see Sect. 12.6) and
is steadily losing mass to its companion. The
mass transfer causes additional features in the
lightcurve.

W UMa Stars In W UMa stars, the lightcurve
minima are almost identical, very round and
broad. These are close binary systems where both
components overfill their Roche lobes, forming
a contact binary system.

The observed lightcurves of photometric bi-
naries may contain many additional features that
confuse the preceding classification.

— The shape of the star may be distorted by the
tidal force of the companion. The star may be
ellipsoidal or fill its Roche surface, in which
case it becomes drop-like in shape.

— The limb darkening (Sects. 9.6 and 13.2) of the
star may be considerable. If the radiation from
the edges of the stellar disk is fainter than that
from the centre, it will tend to round off the
lightcurve.

— In elongated stars there is gravity darkening:
the parts most distant from the centre are cooler
and radiate less energy.

— There are also reflection phenomena in stars. If
the stars are close together, they will heat the
sides facing each other. The heated part of the
surface will then be brighter.

— In systems with mass transfer, the material
falling onto one of the components will change
the surface temperature.
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All these additional effects cause difficulties
in interpreting the lightcurve. Usually one com-
putes a theoretical model and the corresponding
lightcurve, which is then compared with the ob-
servations. The model is varied until a satisfac-
tory fit is obtained.

So far we have been concerned solely with the
properties of binary systems in the optical do-
main. Recently many double systems that radiate
strongly at other wavelengths have been discov-
ered. Particularly interesting are the binary pul-
sars, where the velocity variation can be deter-
mined from radio observations. Many different
types of binaries have also been discovered at
X-ray wavelengths. These systems will be dis-
cussed in Chap. 15.

The binary stars are the only stars with ac-
curately known masses. The masses for other
stars are estimated from the mass-luminosity re-
lation (Sect. 9.7), but that is valid only for main-
sequence stars and has to be calibrated by means
of binary observations.

10.5 Examples

Example 10.1 (The Mass of a Binary Star) The
distance of a binary star is 10 pc and the largest
angular separation of the components is 7”7 and
the smallest is 1”. The orbital period is 100 years.
The mass of the binary is to be determined, as-
suming that the orbital plane is normal to the line
of sight.

From the angular separation and the distance,
the semimajor axis is

a=4" x 10 pc =40 au.
According to Kepler’s third law

a’ 403

mi+my =

Let the semimajor axis of one component be a; =

3" and for the other a, = 1”. Now the masses of

the components can be determined separately:

az mz
= mp=-—my=-—_—,
aj 3

my =4.8.

miay =map

mi+my=64 = m;=1.6,

Example 10.2 (The Lightcurve of a Binary) Let
us suppose that the line of sight lies in the orbital
plane of an Algol type binary, where both com-
ponents have the same radius. The lightcurve is
essentially as shown in the figure. The primary
minimum occurs when the brighter component is
eclipsed. The depth of the minima will be calcu-
lated.

Time

Magnitude

If the effective temperatures of the stars are T4
and Tp and their radius is R, their luminosities
are given by

La=4nR*0T{,  Lp=4nR*cTj.

The flat part of the curve corresponds to the total
luminosity
Liot=La+Lp.

The luminosities may be expressed as absolute
bolometric magnitudes by means of (4.13). Since
the distance moduli of the components are the
same, the apparent bolometric magnitude at the
primary minimum will be

ma — Myt = Ma — Myt

Ly
=-251 =42.51
g Ltot £ LA

47 R%o TX +47 R%0 Tg
4nR*o T}

_osig(14 (1)
=2.5lg T .
Similarly the depth of the secondary minimum is

Ta\*
mpg — Mot :2.51g<1 + (—) )
Tp

Let the effective temperatures of the stars be
T4 =5000 K and Tp = 12,000 K. The depth of

=2.51g
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the primary minimum is then

—251g( 14 (220 '
A T Mot = 2978 5000

~ 3.8 mag.

The secondary minimum is

5000 \*
mp — Mot = 2.51g<1 + <12’000> )

~ (.03 mag.

10.6 Exercises

Exercise 10.1 The components of a binary
move along circular orbits. The mutual distance
is 1 au, and the mass of each component is 1 M.
An observer in the plane of the orbit will see pe-
riodic splitting of the spectral lines. What is the

maximum separation of the components of the
H, line.

Exercise 10.2 A planet (mass m) is orbiting
a star (mass M) at a distance a. The distance of
the star from the centre of gravity of the system
is a’. Show that

MP?=a? (a—a’),

where P is period in years, distances are in au’s
and masses in solar masses.

Exercise 10.3 The distance of Barnard’s star is
1.83 pc and mass 0.135 M. It has been sug-
gested that it oscillates with an amplitude of
0.026” in 25 year periods. Assuming this oscil-
lation is caused by a planet, find the mass and ra-
dius of the orbit of this planet.
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The stars are huge gas spheres, hundreds of thou-
sands or millions of times more massive than the
Earth. A star such as the Sun can go on shin-
ing steadily for thousands of millions of years.
This is shown by studies of the prehistory of
the Earth, which indicate that the energy radi-
ated by the Sun has not changed by much during
the last four thousand million years. The equilib-
rium of a star must remain stable for such peri-
ods.

11.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal
equilibrium of a star can be expressed as four
differential equations governing the distribution
of mass, gas pressure and energy production and
transport in the star. These equations will now be
derived.

Hydrostatic Equilibrium The force of gravity
pulls the stellar material towards the centre. It is
resisted by the pressure force due to the thermal
motions of the gas molecules. The first equilib-
rium condition is that these forces be in equilib-
rium.

Consider a cylindrical volume element at the
distance r from the centre of the star (Fig. 11.1).
Its volume is dV = dA dr, where dA is its base
area and dr its height; its mass is dm = pdAdr,
where p = p(r) is the gas density at the radius r.
If the mass inside radius r is M, the gravitational

© Springer-Verlag Berlin Heidelberg 2017

Fig. 11.1 In hydrostatic equilibrium the sum of the grav-
itational and pressure force acting on a volume element is
Zero

force on the volume element will be

GM,dm GM,p
dFg=— 2 =——

dAdr,
,

where G is the gravitational constant. The minus
sign in this expression means that the force is di-
rected towards the centre of the star. If the pres-
sure at the lower surface of the volume element
is P and at its upper surface P +dP, the net force
of pressure acting on the element is

dFp=PdA— (P +dP)dA
=—dPdA.

Since the pressure decreases outwards, dP will
be negative and the force dF, positive. The equi-
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librium condition is that the total force acting on
the volume element should be zero, i.e.

0=dF, +dF,

GM;p

=" dAdr —dpPdA
;

or
dpP _ GM,p
dr r2

This is the equation of hydrostatic equilibrium.

(11.1)

Mass Distribution The second equation gives
the mass contained within a given radius. Con-
sider a spherical shell of thickness dr at the dis-
tance r from the centre (Fig. 11.2). Its mass is

dM, = 47rr2,o dr,

giving the mass continuity equation

dMm,
—L =dnrp.

- (11.2)

Energy Production The third equilibrium con-
dition expresses the conservation of energy, re-
quiring that any energy produced in the star has
to be carried to the surface and radiated away. We
again consider a spherical shell of thickness dr

Fig. 11.2 The mass of a thin spherical shell is the product
of its volume and its density

and mass dM, at the radius r (Fig. 11.3). Let L,
be the energy flux, i.e. the amount of energy pass-
ing through the surface r per unit time. If ¢ is the
energy production coefficient, i.e. the amount of
energy released in the star per unit time and mass,
then

dL, =L;4qr — L, = edM, = 4nr2p£ dr.

Thus the energy conservation equation is

dL,
dr

The rate at which energy is produced depends on
the distance to the centre. Essentially all of the
energy radiated by the star is produced in the hot
and dense core. In the outer layers the energy pro-
duction is negligible and L, is almost constant.

= 47r? pe. (11.3)

The Temperature Gradient The fourth equi-
librium equation gives the temperature change as
a function of the radius, i.e. the temperature gra-
dient d7' /dr. The form of the equation depends
on how the energy is transported: by conduction,
convection or radiation.

In the interiors of normal stars conduction is
very inefficient, since the electrons carrying the
energy can only travel a short distance with-
out colliding with other particles. Conduction

Lyyiar

Fig. 11.3 The energy flowing out of a spherical shell is
the sum of the energy flowing into it and the energy gen-
erated within the shell
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only becomes important in compact stars, white
dwarfs and neutron stars, where the mean free
path of photons is extremely short, but that of
some electrons can be relatively large. In nor-
mal stars conductive energy transport can be ne-
glected.

In radiative energy transport, photons emitted
in hotter parts of the star are absorbed in cooler
regions, which they heat. The star is said to be in
radiative equilibrium, when the energy released
in the stellar interior is carried outwards entirely
by radiation.

The radiative temperature gradient is related to
the energy flux L, according to

dr 3 Kp L,
o= (2 () (ama) - ane

where a = 40 /c =7.564 x 1071© Jm 3K~ is
the radiation constant, ¢ the speed of light, and
p the density. The mass absorption coefficient k
gives the amount of absorption per unit mass. Its
value depends on the temperature, density and
chemical composition.

In order to derive (11.4), we consider the equa-
tion of radiative transfer (5.44). In terms of the
variables used in the present chapter, it may be
written

dl, .
cosd — = —ky,pl), + jy.
dr

In this equation «, is replaced with a suitable
mean value «. The equation is then multiplied
with cos6 and integrated over all directions and
frequencies. On the left hand side, I, may be ap-
proximated with the Planck function B,,. The fre-
quency integral may then be evaluated by means
of (5.16). On the right-hand side, the first term
can be expressed in terms of the flux density ac-
cording to (4.2) and the integral over directions of
the second gives zero, since j, does not depend
on 6. One thus obtains

4w d (ac 74 F
—— — =—kpF;.
3 dr \47 e

Finally, using the relation

L,
" 4pr2’

between the flux density F, and the energy
flux L,, one obtains (11.4).

The derivative d7 /dr is negative, since the
temperature increases inwards. Clearly there has
to be a temperature gradient, if energy is to be
transported by radiation: otherwise the radiation
field would be the same in all directions and the
net flux F, would vanish.

If the radiative transfer of energy becomes in-
efficient, the absolute value of the radiative tem-
perature gradient becomes very large. In that case
motions are set up in the gas, which carry the
energy outwards more efficiently than the radi-
ation. In these convective motions, hot gas rises
upwards into cooler layers, where it loses its en-
ergy and sinks again. The rising and sinking gas
elements also mix the stellar material, and the
composition of the convective parts of a star be-
comes homogeneous. Radiation and conduction,
on the other hand, do not mix the material, since
they move only energy, not gas.

In order to derive the temperature gradient for
the convective case, consider a rising bubble. As-
sume that the gas moving with the bubble obeys
the adiabatic equation of state

-1
TxP 7, (11.5)
where P is the pressure of the gas and y, the adi-
abatic exponent

y =Cp/Cy, (11.6)

is the ratio of the specific heats in constant pres-
sure and constant volume. This ratio of the spe-
cific heats depends on the ionisation of the gas,
and can be computed when the temperature, den-
sity and chemical composition are known.
Taking the derivative of (11.5) we get the ex-
pression for the convective temperature gradient

ar q I\TdP

dr y/)Pdr’

In the practical computation of stellar struc-
ture, one uses either (11.4) or (11.7), depending
on which equation gives a less steep temperature

gradient. In the outermost layers of stars heat ex-
change with the surroundings must be taken into

(11.7)
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account, and (11.7) is no longer a good approxi-
mation. An often used method for calculating the
convective temperature gradient in that case is the
mixing-length theory. The theory of convection is
a difficult and still imperfectly understood prob-
lem, which is beyond the scope of this presenta-
tion.

The convective motions set in when the radia-
tive temperature gradient becomes larger in ab-
solute value than the adiabatic gradient, i.e. if ei-
ther the radiative gradient becomes steep or if the
convective gradient becomes small. From (11.4)
it can be seen that a steep radiative gradient is
expected, if either the energy flux density or the
mass absorption coefficient becomes large. The
convective gradient may become small, if the adi-
abatic exponent approaches 1.

Boundary Conditions In order to obtain a well-
posed problem, some boundary conditions have
to be prescribed for the preceding differential
equations:

— There are no sources of energy or mass at the
centre inside the radius r = 0; thus My = 0 and
Ly=0.

— The total mass within the radius R of the star
is fixed, Mr = M.

— The temperature and pressure at the stellar sur-
face have some determinate values, T and Pg.
These will be very small compared to those in
the interior, and thus it is usually sufficient to
take T =0 and P =0.

In addition to these boundary conditions one
needs an expression for the pressure, which is
given by the equation of state as well as expres-
sions for the mass absorption coefficient and the
energy generation rate, which will be considered
later. The solution of the basic differential equa-
tions give the mass, temperature, density and en-
ergy flux as functions of the radius. The stellar
radius and luminosity can then be calculated and
compared with the observations.

The properties of a stellar equilibrium model
are essentially determined once the mass and the
chemical composition have been given. This re-
sult is known as the Vogt—Russell theorem.

11.2 Physical State of the Gas

Due to the high temperature the gas in the stars is
almost completely ionised. The interactions be-
tween individual particles are small, so that, to
a good approximation, the gas obeys the perfect
gas equation of state,

k

P=—pT,
pmy

(11.8)

where k is Boltzmann’s constant, p the mean
molecular weight in units of my, and my the
mass of the hydrogen atom.

The mean molecular weight can be approxi-
mately calculated assuming complete ionisation.
An atom with nuclear charge Z then produces
Z + 1 free particles (the nucleus and Z electrons).
Hydrogen gives rise to two particles per atomic
mass unit; helium gives rise to three particles per
four atomic mass units. For all elements heavier
than hydrogen and helium it is usually sufficient
to take Z + 1 to be half the atomic weight. (Exact
values could easily be calculated, but the abun-
dance of heavy elements is so small that this is
usually not necessary.) In astrophysics the rela-
tive mass fraction of hydrogen is conventionally
denoted by X, that of helium by ¥ and that of all
heavier elements by Z, so that

X+Y+Z=1. (11.9)

(The Z occurring in this equation should not be
confused with the nuclear charge, which is un-
fortunately denoted by the same letter.) Thus the
mean molecular weight will be

1

= (11.10)
2X+3Y+12Z

At high temperatures the radiation pressure
has to be added to the gas pressure described by
the perfect gas equation. The pressure exerted by
radiation is (see Box 11.2)

| -1

PradzgaT ) (11.11)

where a is the radiation constant. Thus the total
pressure is

k |

P=——pT +-aT

oo : (11.12)
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The perfect gas law does not apply at very high
densities.

The Pauli exclusion principle states that an
atom with several electrons cannot have more
than one electron with all four quantum numbers
equal. This can also be generalised to a gas con-
sisting of electrons (or other fermions). A phase
space can be used to describe the electrons. The
phase space is a 6-dimensional space, three coor-
dinates of which give the position of the particle
and the other three coordinates the momenta in
x, y and z directions. A volume element of the
phase space is

AV = AxAyAzAp, ApyAp,.  (11.13)

From the uncertainty principle it follows that the
smallest meaningful volume element is of the or-
der of h3. According to the exclusion principle
there can be only two electrons with opposite
spins in such a volume element. When density
becomes high enough, all volume elements of the
phase space will be filled up to a certain limiting
momentum. Such matter is called degenerate.

Electron gas begins to degenerate when the
density is of the order 107 kg/m>. In ordinary
stars the gas is usually nondegenerate, but in
white dwarfs and in neutron stars, degeneracy is
of central importance. The pressure of a degener-
ate electron gas is (see Box 11.2)

2\ (N3
Pe(—)=) .
() ()

where m. is the electron mass and N/ V the num-
ber of electrons per unit volume. This equation
may be written in terms of the density

(11.14)

p=Npemu/V,

where . is the mean molecular weight per free
electron in units of my. An expression for pe may
be derived in analogy with (11.10):
— l —
CX+2v+iz X+U

He (11.15)

For the solar hydrogen abundance this yields

fe=2/(0.71+ 1) = 1.17.
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The final expression for the pressure is
P~ <—>< ) . (11.16)
Me HeMH

This is the equation of state of a degenerate elec-
tron gas. In contrast to the perfect gas law the
pressure no longer depends on the temperature,
only on the density and on the particle masses.

In normal stars the degenerate gas pressure is
negligible, but in the central parts of giant stars
and in white dwarfs, where the density is of the
order of 10% kg/m?, the degenerate gas pressure
is dominant, in spite of the high temperature.

At even higher densities the electron momenta
become so large that their velocities approach the
speed of light. In this case the formulas of the
special theory of relativity have to be used. The
pressure of a relativistic degenerate gas is

N3 4/3
P%hc<—> =hc< P ) . (1L17)
14 MeMH

In the relativistic case the pressure is proportional
to the density to the power 4/3, rather than 5/3
as for the nonrelativistic case. The transition to
the relativistic situation takes place roughly at the
density 10° kg/m?.

In general the pressure inside a star depends
on the temperature (except for a completely de-
generate gas), density and chemical composition.
In actual stars the gas will never be totally ionised
or completely degenerate. The pressure will then
be given by more complicated expressions. Still
it can be calculated for each case of interest. One
may then write

P=PT,p,X,Y, Z), (11.18)

giving the pressure as a known function of the
temperature, density and chemical composition.

The opacity of the gas describes how difficult
it is for radiation to propagate through it. The
change d/ of the intensity in a distance dr can
be expressed as

dl = —Iadr,

where o is the opacity (Sect. 4.5). The opacity
depends on the chemical composition, tempera-
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ture and density of the gas. It is usually written as
o = kp, where p is the density of the gas and «
the mass absorption coefficient ([k] = m?/kg).

The inverse of the opacity represents the mean
free path of radiation in the medium, i.e. the dis-
tance it can propagate without being scattered
or absorbed. The different types of absorption
processes (bound—bound, bound—free, free—free)
have been described in Sect. 5.1. The opacity of
the stellar material due to each process can be
calculated for relevant values of temperature and
density.

11.3 Stellar Energy Sources

When the equations of stellar structure were de-
rived, the character of the source of stellar energy
was left unspecified. Knowing a typical stellar lu-
minosity, one can calculate how long different
energy sources would last. For instance, normal
chemical burning could produce energy for only
a few thousand years. The energy released by the
contraction of a star would last slightly longer,
but after a few million years this energy source
would also run out.

Terrestrial biological and geological evidence
shows that the solar luminosity has remained
fairly constant for at least a few thousand mil-
lion years. Since the age of the Earth is about
5000 million years, the Sun has presumably ex-
isted at least for that time. Since the solar lu-
minosity is 4 x 10%® W, it has radiated about
6 x 10% J in 5 x 10° years. The Sun’s mass is
2 x 1030 kg; thus it must be able to produce at
least 3 x 1013 J/kg.

The general conditions in the solar interior
are known, regardless of the exact energy source.
Thus, in Example 11.5, it will be estimated that
the temperature at half the radius is about 5 mil-
lion degrees. The central temperature must be
about ten million kelvins, which is high enough
for thermonuclear fusion reactions to take place.

In fusion reactions light elements are trans-
formed into heavier ones. The final reaction prod-
ucts have a smaller total mass than the initial nu-
clei. This mass difference is released as energy
according to Einstein’s relation E = mc>. Ther-

monuclear reactions are commonly referred to as
burning, although they have no relation to the
chemical burning of ordinary fuels.

The atomic nucleus consists of protons and
neutrons, together referred to as nucleons. We de-
fine

mp = proton mass,

myu = neutron mass,

Z = nuclear charge = atomic number,
N = neutron number,

A =Z 4+ N = atomic weight,

m(Z, N) = mass of the nucleus.

The mass of the nucleus is smaller than the
sum of the masses of all its nucleons. The dif-
ference is called the binding energy. The binding
energy per nucleon is

1 2

0= Z(Zmp + Nmy —m(Z,N))c*. (11.19)
It turns out that Q increases towards heavier ele-
ments up to iron (Z = 26). Beyond iron the bind-
ing energy again begins to decrease (Fig. 11.4).

It is known that the stars consist mostly of hy-
drogen. Let us consider how much energy would
be released by the fusion of four hydrogen nu-
clei into a helium nucleus. The mass of a pro-
ton is 1.672 x 10727 kg and that of a helium nu-
cleus is 6.644 x 10727 kg. The mass difference,
4.6 x 1072 kg, corresponds to an energy differ-
ence E =4.1 x 1072 J. Thus 0.7 % of the mass
is turned into energy in the reaction, correspond-
ing to an energy release of 6.4 x 10'* J per one
kilogram of hydrogen. This should be compared
with our previous estimate that 3 x 10'3 J/kg is
needed.

Already in the 1930’s it was generally ac-
cepted that stellar energy had to be produced by
nuclear fusion. In 1938 Hans Bethe and inde-
pendently Carl Friedrich von Weizsdcker put for-
ward the first detailed mechanism for energy pro-
duction in the stars, the carbon—nitrogen—oxygen
(CNO) cycle. The other important energy gener-
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Fig. 11.4 The nuclear
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ation processes (the proton—proton chain and the
triple-alpha reaction) were not proposed until the
1950’s.

The Proton—Proton Chain (Fig. 11.5). In stars
with masses of about that of the Sun or smaller,
the energy is produced by the proton—proton (pp)
chain. It consists of the following steps:

ppl: (1) 'H+'H — 2H+et + ve,
'H+'H+e™ — 2H+ v,
(2) 2H+'H — 3He +y,
(3) *He+3He — *He+2!'H.

For each reaction (3) the reactions (1) and (2)
have to take place twice. The first reaction step
has a very small probability, which has not been
measured in the laboratory. At the central den-
sity and temperature of the Sun, the expected
time for a proton to collide with another one to
form a deuteron is 100 years on the average. It is
only thanks to the slowness of this reaction that
the Sun is still shining. If it were faster, the Sun
would have burnt out long ago. The neutrino pro-
duced in the reaction (1) can escape freely from
the star and carries away some of the energy re-
leased. The positron e™
lated together with an electron, giving rise to two
gamma quanta.

is immediately annihi-

100 150 200 250
Mass number A

The second reaction, where a deuteron and
a proton unite to form the helium isotope 3He, is
very fast compared to the preceding one. Thus the
abundance of deuterons inside stars is very small.

The last step in the pp chain can take three dif-
ferent forms. The ppl chain shown above is the
most probable one. In the Sun 91 % of the energy
is produced by the ppl chain. It is also possible
for 3He nuclei to unite into *He nuclei in two ad-
ditional branches of the pp chain.

ppll: (3)  3He+*He — "Be+y,
4) "Be+e~ — "Li+ ve,
(5)  'Li+'H — “He+ “He,
pplll: (3)  3He+“He — "Be+y,
4  "Be+'H —8B+y,
(5) 8B — 8Be+et + v,
(6) 8Be — “He + *He.

The Carbon Cycle (See Fig. 11.6.) At tem-
peratures below 20 million degrees the pp chain
is the main energy production mechanism. At
higher temperatures corresponding to stars with
masses above 1.5 Mg, the carbon (CNO) cycle
becomes dominant, because its reaction rate in-
creases more rapidly with temperature. In the
CNO cycle carbon, oxygen and nitrogen act as
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Fig. 11.5 The
proton—proton chain. In the H+'H o 2Hte + v, W H+ H+e - 2H+ v,
ppl branch, four protons
are transformed into one
helium nucleus, two produces produces
99.75 % *H 0.25% °H

positrons, two neutrinos

and radiation. The relative
weights of the reactions are 2)

’H+ 'H— He + 7

given for conditions in the
Sun. The pp chain is the
most important energy

¥

source in stars with mass 3
below 1.5 Mg, &

3He + *He — “He +2 'H

[
ppl branch
91 % He

'

'

He + “He — "Be + %

v

'

"Be + e~ — 'Li+ v, Be + 'H—> B+ 7y

Y Y

"Li+ 'H —> “He + “He 8B > %Be +e* + ve

catalysts. The reaction cycle is the following:

()  "2C+'H— BN+y,

2 BN — BC+et +ve,
(3)  BC+'H-"N+y,

@ “N+'H-P0+y,

5) o — BNy +ve,
(6) BN+ 1H — '2C 4 *He.

Reaction (4) is the slowest, and thus deter-
mines the rate of the CNO cycle. At a tempera-
ture of 20 million degrees the reaction time for
the reaction (4) is a million years.

The fraction of energy released as radiation in
the CNO cycle is slightly smaller than in the pp
chain, because more energy is carried away by
neutrinos.

ppll branch
9 % He A
8Be — *He + “He
I
pplII branch
0.1 % He

very temperature sensitive

/

The Triple Alpha Reaction As a result of the
preceding reactions, the abundance of helium in
the stellar interior increases. At a temperature
above 108 degrees the helium can be transformed
into carbon in the triple alpha reaction:

(D
2

‘He + *He < SBe,
8Be +4He — 12C+y.

Here 8Be is unstable and decays into two he-
lium nuclei or alpha particles in 2.6 x 1071¢ sec-
onds. The production of carbon thus requires the
almost simultaneous collision of three particles.
The reaction is often written

3%He — 2C+ V.

Once helium burning has been completed, at
higher temperatures other reactions become pos-
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/ Proton in

2Cc+H- BN+y

[\

BN+ 'H— 2C + “He BN BCret+v,

[ YN
Helium nucleus
out

Proton in

A

B0 5 BN+et+v, BC+'H-"“N+y

WA

BN+ 1H- B0 +y

/

Proton in

Fig. 11.6 The CNO cycle is catalysed by '>C. It trans-
forms four protons into a helium nucleus, two positrons,
two neutrinos and radiation. It is the dominant energy
source for stars more massive than 1.5 Mg

sible, in which heavier elements up to iron and
nickel are built up. Examples of such reactions
are various alpha reactions and oxygen, carbon
and silicon burning.

Alpha Reactions During helium burning some
of the carbon nuclei produced react with helium
nuclei to form oxygen, which in turn reacts to
form neon, etc. These reactions are fairly rare and
thus are not important as stellar energy sources.
Examples are
2C 4 4He — 190+,
10 +4He — 2Ne + v,
20Ne + “He — **Mg + y.
Carbon Burning After the helium is exhausted,
carbon burning sets in at the temperature (5-8) x
1019 K:
1204 12C 5 2Mg + y
— PNa+'H
— 20Ne + “He
-2 Mg+n
— 160 + 24He.

Oxygen Burning Oxygen is consumed at
slightly higher temperatures in the reactions

160+160—>32S+y
— 3P4+ 1H
— 28Si + “He
—31S+n
— Mg + 2*He.

Silicon Burning After several intermediate
steps the burning of silicon produces nickel and
iron. The total process may be expressed as

288j + 288 — ONi+ y,

SoNj — OFe +2et + 2.

When the temperature becomes higher than
about 10° K, the energy of the photons becomes
large enough to destroy certain nuclei. Such re-
actions are called photonuclear reactions or pho-
todissociations.

The production of elements heavier than iron
requires an input of energy, and therefore such
elements cannot be produced by thermonuclear
reactions. Elements heavier than iron are almost
exclusively produced by neutron capture dur-
ing the final violent stages of stellar evolution
(Sect. 11.5).

The rates of the reactions presented above can
be determined by laboratory experiments or by
theoretical calculations. Knowing them, one can
calculate the rate at which energy is released per
unit mass and time as a function of the density,
temperature and chemical composition:

e=e(T,p,X,Y,2). (11.20)

In reality the relative abundance of each of the
heavier nuclei needs to be known, not just their
total abundance Z.

11.4 Stellar Models

A theoretical stellar model is obtained if one
solves the differential equations for stellar struc-
ture. As we have already noted, the model is
uniquely defined once the chemical composition
and the mass of the star have been given.
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Table 11.1 Properties of zero age main sequence stars. (7. = central temperature; p. = central density; M.j = relative
mass of convective interior; M., = relative mass of convective envelope)

M [Mo] R [Ro] L[Lc] T [K]

30 6.6 140,000 44,000
15 4.7 21,000 32,000
9 35 4500 26,000
5 2.2 630 20,000
3 1.7 93 14,000
1.5 1.2 54 8100
1.0 0.87 0.74 5800
0.5 0.44 0.038 3900

Stars just formed out of the interstellar me-
dium are chemically homogeneous. When stel-
lar models for homogeneous stars are plotted in
the HR diagram, they fall along the lower edge of
the main sequence. The theoretical sequence ob-
tained in this way is called the zero age main se-
quence, ZAMS. The exact position of the ZAMS
depends on the initial chemical composition. For
stars with an initial abundance of heavy elements
like that in the Sun, the computed ZAMS is in
good agreement with the observations. If the ini-
tial value of Z is smaller, the theoretical ZAMS
falls below the main sequence in the subdwarf
region of the HR diagram. This is related to the
classification of stars into populations I and II,
which is discussed in Sect. 17.2.

The theoretical models also provide an ex-
planation for the mass—luminosity relation. The
computed properties of zero age main sequence
stars of different masses are given in Table 11.1.
The chemical composition assumed is X = 0.71
(hydrogen mass fraction), ¥ = 0.27 (helium)
and Z = 0.02 (heavier elements), except for the
30 M star, which has X = 0.70 and Y = 0.28.
The luminosity of a one solar mass staris 0.74 Lo
and the radius 0.87 R . Thus the Sun has bright-
ened and expanded to some extent during its evo-
lution. However, these changes are small and do
not conflict with the evidence for a steady solar
energy output. In addition the biological evidence
only goes back about 3000 million years.

The model calculations show that the central
temperature in the smallest stars (M = 0.08 M)
is about 4 x 10° K, which is the minimum tem-
perature required for the onset of thermonuclear

T; [10° K] pe [kg/m?] M. [M] Mee [M]
36 3000 0.60 0
34 6200 0.39 0
31 7900 0.26 0
27 26,000 0.22 0
24 42,000 0.18 0
19 95,000 0.06 0
14 89,000 0 0.01
9.1 78,000 0 0.41

reactions. In the biggest stars (M =~ 50 M), the
central temperature reaches 4 x 107 K.

The changes in chemical composition caused
by the nuclear reactions can be computed, since
the rates of the various reactions at different
depths in the star are known. For example, the
change AX of the hydrogen abundance in the
time interval At is proportional to the rate of en-
ergy generation ¢ and to Af:

AX o —eAt. (11.21)

The constant of proportionality is clearly the
amount of hydrogen consumed per unit energy
[kg/T]. The value of this constant of proportion-
ality is different for the pp chain and the CNO
cycle. Therefore the contribution from each re-
action chain must be calculated separately in
(11.21). For elements that are produced by the
nuclear reactions, the right-hand side contribution
in (11.21) is positive. If the star is convective, the
change in composition is obtained by taking the
average of (11.21) over the convection zone.

Box 11.1 (Gas Pressure and Radiation Pres-
sure) Let us consider noninteracting particles
in a rectangular box. The particles may also be
photons. Let the sides of the box be Ax, Ay
and Az, and the number of particles, N. The
pressure is caused by the collisions of the par-
ticles with the sides of the box. When a par-
ticle hits a wall perpendicular to the x axis,
its momentum in the x direction, p,, changes
by Ap = 2p,. The particle will return to the
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same wall after the time Ar = 2Ax/v,. Thus
the pressure exerted by the particles on the wall
(surface area A = AyAz)is

_E_ZAP/At_ D PxVx
A A T AxAyAz

_ N{pxvx)
V 9

P

where V = AxAyAz is the volume of the box
and the angular brackets represent the aver-
age value. The momentum is p, = mv, (where
m = hv/c? for photons), and hence

_ Nm(v})
Y

P

Suppose the velocities of the particles are
isotropically distributed. Then (v%) = (vf,) =
(v2), and thus

and

3V

If the particles are gas molecules, the energy
of a molecule is ¢ = %mvz. The total energy
of the gas is E = N{(¢) = %Nm(vz), and the
pressure may be written

2F
p==

=37 (gas).

If the particles are photons, they move with the
speed of light and their energy is &€ = mc?. The
total energy of a photon gasis thus E = N (g) =
Nmc? and the pressure is

1 E ..
P = —— (radiation).
3V

According to (4.7), (4.4) and (5.16) the en-
ergy density of blackbody radiation is

E 4 4 4 4 4
—=u=—I=-F=-0T EGT,
\% c c c

where a = 40 /c is the radiation constant. Thus
the radiation pressure is

Praga =a T*/3.

Box 11.2 (The Pressure of a Degenerate Gas)
A gas where all available energy levels up to
a limiting momentum pg, known as the Fermi
momentum, are filled is called degenerate. We
shall determine the pressure of a completely
degenerate electron gas.

Let the volume of the gas be V. We con-
sider electrons with momenta in the range
[p, p + dp]l. Their available phase space vol-
ume is 47p?dpV. According to the Heisen-
berg uncertainty relation the elementary vol-
ume in phase space is 43 and, according to the
Pauli exclusion principle, this volume can con-
tain two electrons with opposite spins. Thus the
number of electrons in the momentum interval

[p,p+dplis

4 2
AN = ptdp V.
h3

The total number of electrons with momenta
smaller than py is

gqr vV [P0, 8V ;4

Hence the Fermi momentum py is

N3 /N3
- (2)30)"

Nonrelativistic Gas The kinetic energy of an
electron is € = p?/2me.. The total energy of the

gas is
4V PO
E=[edan="Z prdp
3
meh 0

AV

T Smen3 PO

Introducing the expression for the Fermi mo-
mentum pg, one obtains

7 3\ Pr2 N\
E=—(Z2) =—v(=Z) .
40\ Me |4

The pressure of the gas was derived in
Box 11.1:

2E
p=:=
3V
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1 /3\*r2 N\
3656
(nonrelativistic).

Here N/ V is the number density of electrons.

Relativistic Gas If the density becomes so
large that the electron kinetic energy € corre-
sponding to the Fermi momentum exceeds the
rest energy mec?, the relativistic expression for
the electron energy has to be used. In the ex-
treme relativistic case € = cp and the total en-

ergy

8 Vv po
E=/8dN= e / p3dp
o Jo

2ncV 4
e P

The expression for the Fermi momentum re-
mains unchanged, and hence

/3 4/3 N 4/3
E= —<—> th(—) .
8\ \%

The pressure of the relativistic electron gas is
obtained from the formula derived for a photon
gas in Box 11.1:

_1E
T3V

1/3\/3 N\ 4/3 o
=ql he v (relativistic).
b4

We have obtained the nonrelativistic and ex-
treme relativistic approximations to the pres-
sure. In intermediate cases the exact expression
for the electron energy,

’

&= (mgc4 + p2cz)l/2
has to be used.

The preceding derivations are rigorously
valid only at zero temperature. However, the
densities in compact stars are so high that the
effects of a nonzero temperature are negligible,
and the gas may be considered completely de-
generate.

11.5 Examples

Example 11.1 (The Gravitational Acceleration at
the Solar Surface) The expression for the gravi-
tational acceleration is

_ GMg
8=

Using the solar mass M = 1.989 x 10°° kg and
radius R = 6.96 x 103 m, one obtains

g=274ms %>~ 28g,

where go = 9.81 ms~2 is the gravitational accel-
eration at the surface of the Earth.

Example 11.2 (The Average Density of the Sun)
The volume of a sphere with radius R is

4 3
V==-mR’
3

thus the average density of the Sun is

=M _ M 410kgm™
= — = ~ m .
P=V T R g

Example 11.3 (Pressure at Half the Solar Radius)
The pressure can be estimated from the condition
for the hydrostatic equilibrium (11.1). Suppose
the density is constant and equal to the average
density p. Then the mass within the radius r is

4 3

M, = gnﬁr

and the hydrostatic equation can be written

dP  GM,p _ 4xGp°r
a2 30

This can be integrated from half the solar radius,
r = Rp /2, to the surface, where the pressure van-

ishes:
0 4 Ro
/ dP:——nGﬁzf rdr,
P 3 Ro/2
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which gives

1
P= EnGﬁzRé

1
N 6.67 x 10~ x 14102

x (6.96 x 10%)? N/m?
~ 10" Pa.

This estimate is extremely rough, since the den-
sity increases strongly inwards.

Example 11.4 (The Mean Molecular Weight of
the Sun) In the outer layers of the Sun the ini-
tial chemical composition has not been changed
by nuclear reactions. In this case one can use the
values X =0.71, Y =0.27 and Z = 0.02. The
mean molecular weight (11.10) is then

1
T 2x0.71 +0.75 x 0.27 4+ 0.5 x 0.02

~0.61.

I

When the hydrogen is completely exhausted,
X =0and Y =0.98, and hence

1
T 0.75 x 0.98 4+ 0.5 x 0.02

% ~1.34.

Example 11.5 (The Temperature of the Sun
at r = Rp/2) Using the density from Exam-
ple 11.2 and the pressure from Example 11.3,
the temperature can be estimated from the per-
fect gas law (11.8). Assuming the surface value
for the mean molecular weight (Example 11.4),
one obtains the temperature

T umy P
kp
061 x1.67x107%7 x 1.0 x 10
N 1.38 x 10=23 x 1410
~5x 10° K.

Example 11.6 (The Radiation Pressure in the
Sun at r = Ry /2) In the previous example we
found that the temperature is T 2 5 x 10° K. Thus

the radiation pressure given by (11.11) is

1 4
Prad=§aT

1
=3 7.564 x 1071% x (5 x 10%)*
~2 x 10'! pa.

This is about a thousand times smaller than the
gas pressure estimated in Example 11.3. Thus it
confirms that the use of the perfect gas law in Ex-
ample 11.5 was correct.

Example 11.7 (The Path of a Photon from the
Centre of a Star to Its Surface) Radiative en-
ergy transport can be described as a random walk,
where a photon is repeatedly absorbed and re-
emitted in a random direction. Let the step length
of the walk (the mean free path) be d. Consider,
for simplicity, the random walk in a plane. After
one step the photon is absorbed at
x1 =dcosby, y1 =dsinfy,

where 6; is an angle giving the direction of the
step. After N steps the coordinates are

N
y= stin@i,

i=1

N
X :chos@i,

i=1
and the distance from the starting point is

r2=x2+y2

N 2 N 2
=d? |:(Z cos 9,') + <Z sinG[) :| .
1 1
The first term in square brackets can be written
N 2
(Z cos 9,-)
1

= (cosf +cosbr + - - +cosé?N)2

N
= ZCOSZQi + Zcos@i cosd;.
1 i#]
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Since the directions 6; are randomly distributed
and independent,

Zcos@i cosfj =0.
i#]J

The same result applies for the second term in
square brackets. Thus

N
r? =d* 2:(0052 0; + sin’ Gi) = Nd>.
1

After N steps the photon is at the distance r =
d+/N from the starting point. Similarly, a drunk-
ard taking a hundred one-metre steps at random
will have wandered ten metres from his/her start-
ing point. The same result applies in three dimen-
sions.

The time taken by a photon to reach the sur-
face from the centre depends on the mean free
path d = 1/a = 1/kp. The value of « at half
the solar radius can be estimated from the val-
ues of density and temperature obtained in Ex-
amples 11.2 and 11.5. The mass absorption co-
efficient in these conditions is found to be k¥ =
10 m?/kg. (We shall not enter on how it is calcu-
lated.) The photon mean free path is then

This should be a reasonable estimate in most
of the solar interior. Since the solar radius r =
10° m, the number of steps needed to reach the
surface will be N = (r/d)? = 10%°. The total path
travelled by the photon is s = Nd = 10?? m, and
the time taken is t = s/c = 100 years; a more
careful calculation gives ¢ = 107 years. Thus it
takes 10 million years for the energy generated
at the centre to radiate into space. Of course the
radiation that leaves the surface does not consist
of the same gamma photons that were produced
near the centre. The intervening scattering, emis-
sion and absorption processes have transformed
the radiation into visible light (as can easily be
seen).

11.6 Exercises

Exercise 11.1 How many hydrogen atoms are
there in the Sun per each helium atom?

Exercise 11.2 (a) How many pp reactions take
place in the Sun every second? The luminosity
of the Sun is 3.9 x 10%® W, the mass of a pro-
ton is 1.00728 amu, and that of the o particle
4.001514 amu (1 amu is 1.6604 x 10727 kg).

(b) How many neutrinos produced in these pp
reactions will hit the Earth in one second?

Exercise 11.3 The mass absorption coefficient
of a neutrino is ¥ = 1072! m?kg~!. Find the
mean free path at the centre of the Sun.
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In the preceding chapter we have seen how one
can compute the evolution of a star by starting
from a homogeneous model representing a newly
formed system. When the chemical composition
of the star changes with time, a new model is
computed each time. In this chapter we shall con-
sider the theoretical evolutionary paths of sys-
tems with various masses and see how the com-
puted evolution explains the observational data.
The following discussion is rather qualitative,
since the details of the theoretical calculations
are too involved for the present book. Also, the
different evolutionary tracks would become pro-
hibitively complicated if more than the very basic
stellar properties were included.

12.1 Evolutionary Time Scales

Changes in a star may take place on quite differ-
ent time scales at different evolutionary phases.
There are three important basic time scales: the
nuclear time scale t,, the thermal time scale ¢ and
the dynamical or freefall time scale #4.

The Nuclear Time Scale The time in which
a star radiates away all the energy that can be
released by nuclear reactions is called the nu-
clear time scale. An estimate of this time can be
obtained if one calculates the time in which all
available hydrogen is turned into helium. On the
basis of theoretical considerations and evolution-
ary computations it is known that only just over
10 % of the total mass of hydrogen in the star can

© Springer-Verlag Berlin Heidelberg 2017

be consumed before other, more rapid evolution-
ary mechanisms set in. Since 0.7 % of the rest
mass is turned into energy in hydrogen burning,
the nuclear time scale will be

0.007 x 0.1 Mc?
N —_— (12.1)
L
For the Sun one obtains the nuclear time scale

1010 years, and thus

_M/Mg

A 1010 a,
e o ®

(12.2)
This gives the nuclear time scale as a function
of the mass M and luminosity L of a given star.
For example, if the mass is 30 M, one obtains #,
about 2 million years. The reason for the shorter
time scale is that the stellar luminosity strongly
increases for higher masses (Table 12.1).

The Thermal Time Scale The time in which
a star would radiate away all its thermal energy
if the nuclear energy production were suddenly
turned off is called the thermal time scale. This is
also the time it takes for radiation from the centre
to reach the surface. According to the virial theo-
rem (6.51) the kinetic energy of the thermal mo-
tion of the gas particles equals half of the poten-
tial energy. Thus he thermal time scale is roughly
may be estimated as

203 GM?/R
£ L
M/ Mg)?
~_ M/Mo)” x2x107a,  (12.3)
(R/Ro)(L/Lo)
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Table 12.1 Stellar lifetimes (unit 10° years)

Mass [Mo] Spectral type on the Contraction to main Main sequence Main sequence Red giant
main sequence sequence to red giant
30 05 0.02 4.9 0.55 0.3
15 BO 0.06 10 1.7
9 B2 0.2 22 0.2
5 B5 0.6 68 2 20
3 A0 3 240 9 80
1.5 F2 20 2000 280
1.0 G2 50 10,000 680
0.5 MO 200 30,000
0.1 M7 500 107

where G is the constant of gravity and R the stel-
lar radius. For the Sun the thermal time scale is
about 20 million years or 1/500 of the nuclear
time scale.

The Dynamical Time Scale The third and
shortest time scale is the time it would take a star
to collapse if the pressure supporting it against
gravity were suddenly removed. It can be esti-
mated from the time it would take for a particle
to fall freely from the stellar surface to the cen-
tre. This is half of the period given by Kepler’s
third law, where the semimajor axis of the orbit
corresponds to half the stellar radius R:

3 3
.3 (L I SN
2 GM GM

The dynamical time scale of the Sun is about half
an hour.

The ordering of the time scales is normally
like that in the Sun, i.e. t§ < t; < ty.

12.2 The Contraction of Stars
Towards the Main Sequence

The formation and subsequent gravitational col-
lapse of condensations in the interstellar medium
will be considered in a later chapter. Here we
shall follow the behaviour of such a protostar,
when it is already in the process of contraction.
When a cloud contracts, gravitational potential
energy is released and transformed into thermal

energy of the gas and into radiation. Initially the
radiation can propagate freely through the mate-
rial, because the density is low and the opacity
small. Therefore most of the liberated energy is
radiated away and the temperature does not in-
crease. The contraction takes place on the dynam-
ical time scale; the gas is falling freely inwards.

The density and the pressure increase most
rapidly near the centre of the cloud. As the den-
sity increases, so does the opacity. A larger frac-
tion of the released energy is then turned into
heat, and the temperature begins to rise. This
leads to a further increase in the pressure that is
resisting the free fall. The contraction of the cen-
tral part of the cloud slows down. The outer parts,
however, are still falling freely.

At this stage, the cloud may already be con-
sidered a protostar. It consists mainly of hydrogen
in molecular form. When the temperature reaches
1800 K, the hydrogen molecules are dissociated
into atoms. The dissociation consumes energy,
and the rise in temperature is slowed down. The
pressure then also grows more slowly and this in
turn means that the rate of contraction increases.
The same sequence of events is repeated, first
when hydrogen is ionised at 10* K, and then
when helium is ionised. When the temperature
has reached about 10° K, the gas is essentially
completely ionised.

The contraction of a protostar only stops when
a large fraction of the gas is fully ionised in the
form of plasma. The star then settles into hy-
drostatic equilibrium. Its further evolution takes
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Fig. 12.1 The paths in the

HR diagram of stars
contracting to the main
sequence on the thermal
time scale. After a rapid
dynamical collapse the
stars settle on the Hayashi
track and evolve towards
the main sequence on the
thermal time scale.
(Models by Iben, I. (1965):
Astrophys. J. 141, 993)
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place on the thermal time scale, i.e. much more
slowly. The radius of the protostar has shrunk
from its original value of about 100 au to about
1/4 au. It will usually be located inside a larger
gas cloud and will be accreting material from its
surroundings. Its mass therefore grows, and the
central temperature and density increase.

The temperature of a star that has just reached
equilibrium is still low and its opacity corre-
spondingly large. Thus it will be convective in its
centre. The convective energy transfer is quite ef-
ficient and the surface of the protostar will there-
fore be relatively bright.

We now describe the evolution in the HR di-
agram. Initially the protostar will be faint and

cool, and it will reside at the lower far right in
the HR diagram (outside Fig. 12.1). During the
collapse its surface rapidly heats up and bright-
ens and it moves to the upper right of Fig. 12.1.
At the end of the collapse the star will settle at
a point corresponding to its mass on the Hayashi
track. The Hayashi track (Fig. 12.1) gives the lo-
cation in the HR diagram of completely convec-
tive stars. Stars to its right cannot be in equi-
librium and will collapse on the dynamic time
scale.

The star will now evolve almost along the
Hayashi track on the thermal time scale. In the
HR diagram it moves almost vertically down-
wards, its radius decreases and its luminosity
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Fig. 12.2 Herbig—Haro
object number 555 lies at
the end of the “elephant’s
trunk” in Pelican Nebula in
Cygnus. The small wings
are shockwaves, which
give evidence for powerful
outflows from newly
formed stars embedded
within the clouds. (Photo
University of Colorado,
University of Hawaii and
NOAO/AURA/NSF)

drops (Fig. 12.1). As the temperature goes on in-
creasing in its centre, the opacity diminishes and
energy begins to be transported by radiation. The
mass of the radiative region will gradually grow
until finally most of the star is radiative. By then
the central temperature will have become so large
that nuclear reactions begin. Previously all the
stellar energy had been released potential energy,
but now the nuclear reactions make a growing
contribution and the luminosity increases. The
stellar surface temperature will also increase and
the star will move slightly upwards to the left
in the HR diagram. In massive stars, this turn to
the left occurs much earlier, because their central
temperatures are higher and the nuclear reactions
are initiated earlier.

For solar mass stars, the rapid collapse of the
protostellar cloud only lasts for a few hundred
years. The final stage of condensation is much
slower, lasting several tens of millions of years.
This length of time strongly depends on the stel-
lar mass because of the luminosity dependence of
the thermal time scale. A 15 M, star condenses to
the main sequence in 60,000 years, whereas for
a 0.1 M star, the time is hundreds of millions of
years.

Some of the hydrogen burning reactions start
already at a few million degrees. For example,

lithium, beryllium and boron burn to helium in
the ppll and ppllI branches of the pp chain long
before the complete chain has turned on. Be-
cause the star is convective and thus well mixed
during the early stages, even its surface material
will have been processed in the centre. Although
the abundances of the above-mentioned elements
are small, they give important information on the
central temperature.

The beginning of the main sequence phase is
marked by the start of hydrogen burning in the pp
chain at a temperature of about 4 million degrees.
The new form of energy production completely
supersedes the energy release due to contraction.
As the contraction is halted, the star makes a few
oscillations in the HR diagram, but soon settles in
an equilibrium and the long, quiet main sequence
phase begins.

It is difficult to observe stars during contrac-
tion, because the new-born stars are usually hid-
den among dense clouds of dust and gas. How-
ever, some condensations in interstellar clouds
have been discovered and near them, very young
stars. One example are the T Tauri stars. Their
lithium abundance is relatively high, which indi-
cates that they are newly formed stars in which
the central temperature has not yet become large
enough to destroy lithium. Near the T Tauri stars,
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small, bright, star-like nebulae, Herbig—Haro ob-
Jjects, have been discovered. These are thought to
be produced in the interaction between a stellar
wind and the surrounding interstellar medium.

12.3 The Main Sequence Phase

The main sequence phase is that evolutionary
stage in which the energy released by the burn-
ing of hydrogen in the core is the only source
of stellar energy. During this stage, the star is in
stable equilibrium, and its structure changes only
because its chemical composition is gradually al-
tered by the nuclear reactions. Thus the evolu-
tion takes place on a nuclear time scale, which
means that the main sequence phase is the longest
part of the life of a star. For example, for a so-
lar mass star, the main sequence phase lasts for
about 10,000 million years. More massive stars
evolve more rapidly, because they radiate much
more power. Thus the main sequence phase of
a 15 solar mass star is only about 10 million
years. On the other hand, less massive stars have
a longer main sequence lifetime: a 0.25 M star
spends about 70,000 million years on the main
sequence.

Since stars are most likely to be found in the
stage of steady hydrogen burning, the main se-
quence in the HR diagram is richly populated, in
particular at its low-mass end. The more massive
upper main sequence stars are less abundant be-
cause of their shorter main sequence lifetimes.

If the mass of a star becomes too large, the
force of gravity can no longer resist the radiation
pressure. Stars more massive than this upper limit
cannot form, because they cannot accrete addi-
tional mass during the contraction phase. Theo-
retical computations give a limiting mass of about
120 M; the most massive stars observed are
claimed to be about 150 M. These values are,
however, uncertain.

There is also a lower-mass limit of the main
sequence. Stars below 0.08 M never become hot
enough for hydrogen burning to begin. They can
still generate some luminosity from the burning
of deuterium, but this energy source is rapidly ex-
hausted. These brown dwarfs have surface tem-
peratures in the range of 1000-2000 K. Hundreds

of brown dwarfs have now been found in dedi-
cated surveys. The lower limit for brown dwarf
mass is sometimes taken to be about 0.015 M),
corresponding to the minimum mass for deu-
terium burning.

If the mass is even lower there are no nu-
clear sources of energy. The smallest protostars
therefore contract to planet-like dwarfs. During
the contraction phase they radiate because poten-
tial energy is released, but eventually they be-
gin to cool. In the HR diagram such stars first
move almost vertically downwards and then fur-
ther downwards to the right.

Is there a difference between the lowest-mass
brown dwarfs and the most massive planets? If
brown dwarfs have formed by gravitational col-
lapse and fragmentation as described in the pre-
vious section and in Sect. 15.4, there is no rea-
son not to count them as stars, although they are
not producing energy by nuclear reactions. Plan-
ets in contrast are thought to form much more
slowly by the clumping of solids and accretion of
gas in a protoplanetary disk. The objects formed
by this mechanism start out with a quite differ-
ent structure. Whether such a clear-cut distinction
between the formation mechanisms of dark stars
and planets really can be made still remains an
open question.

The Upper Main Sequence The stars on the
upper main sequence are so massive and their
central temperature so high that the CNO cycle
can operate. On the lower main sequence the en-
ergy is produced by the pp chain. The pp chain
and the CNO cycle are equally efficient at a tem-
perature of 18 million degrees, corresponding to
the central temperature of a 1.5 My star. The
boundary between the upper and the lower main
sequence corresponds roughly to this mass.

The energy production in the CNO cycle is
very strongly concentrated at the core. The out-
ward energy flux will then become very large,
and can no longer be maintained by radiative
transport. Thus the upper main sequence stars
have a convective core, i.e. the energy is trans-
ported by material motions. These keep the mate-
rial well mixed, and thus the hydrogen abundance
decreases uniformly with time within the entire
convective region.
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Fig. 12.3 Stellar
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evolutionary paths in the

HR diagram at the main

sequence phase and later.
On the main sequence,
bounded by dashed curves,
the evolution is on the
nuclear time scale. The
post-main sequence
evolution to the red giant 40k
phase is on the thermal
time scale. The point
marked He corresponds to
helium ignition and in
low-mass stars the helium
flash. The straight line
shows the location of stars
with the same radius.
(Iben, 1. (1967): Annual
Rev. Astron. Astrophys. 5,
571; data for 30 M from
Stothers, R. (1966):
Astrophys. J. 143, 91)
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Outside the core, there is radiative equilib-
rium, i.e. the energy is carried by radiation and
there are no nuclear reactions. Between the core
and the envelope, there is a transition region
where the hydrogen abundance decreases in-
wards.

The mass of the convective core will gradu-
ally diminish as the hydrogen is consumed. In the
HR diagram the star will slowly shift to the upper
right as its luminosity grows and its surface tem-
perature decreases (Fig. 12.2). When the central
hydrogen supply becomes exhausted, the core of
the star will begin to shrink rapidly. The surface
temperature will increase and the star will quickly
move to the upper left. Because of the contraction
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of the core, the temperature in the hydrogen shell
just outside the core will increase. It rapidly be-
comes high enough for hydrogen burning to set
in again.

The Lower Main Sequence On the lower main
sequence, the central temperature is lower than
for massive stars, and the energy is generated by
the pp chain. Since the rate of the pp chain is not
as sensitive to temperature as that of the CNO cy-
cle, the energy production is spread over a larger
region than in the more massive stars (Fig. 12.3).
In consequence, the core never becomes convec-
tively unstable, but remains radiative.
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In the outer layers of lower main sequence
stars, the opacity is high because of the low tem-
perature. Radiation can then no longer carry all
the energy, and convection will set in. The struc-
ture of lower main sequence stars is thus oppo-
site to that of the upper main sequence: the centre
is radiative and the envelope is convective. Since
there is no mixing of material in the core, the hy-
drogen is most rapidly consumed at the very cen-
tre, and the hydrogen abundance increases out-
wards.

As the amount of hydrogen in the core de-
creases, the star will slowly move upwards in
the HR diagram, almost along the main sequence
(Fig. 12.2). It becomes slightly brighter and hot-
ter, but its radius will not change by much. The
evolutionary track of the star will then bend to the
right, as hydrogen in the core nears its end. Even-
tually the core is almost pure helium. Hydrogen
will continue to burn in a thick shell around the
core.

Stars with masses between 0.08 My and
0.26 M have a very simple evolution. During
their whole main sequence phase they are fully
convective, which means that their entire hydro-
gen content is available as fuel. These stars evolve
very slowly toward the upper left in the HR dia-
gram. Finally, when all their hydrogen has burned
to helium, they contract to become white dwarfs.

12.4 The Giant Phase

The main-sequence phase of stellar evolution
ends when hydrogen is exhausted at the centre.
The star then settles in a state in which hydrogen
is burning in a shell surrounding a helium core.
As we have seen, the transition takes place grad-
ually in lower main-sequence stars, giving rise to
the Subgiant Branch in the HR diagram, while
the upper main-sequence stars make a rapid jump
at this point.

The mass of the helium core is increased by
the hydrogen burning in the shell. This leads to
the expansion of the envelope of the star, which
moves almost horizontally to the right in the HR
diagram. As the convective envelope becomes
more extensive, the star approaches the Hayashi
track. Since it cannot pass further to the right, and

since its radius continues to grow, the star has to
move upwards along the Hayashi track towards
larger luminosities (Fig. 12.2). The star has be-
come a red giant.

In low-mass stars (M < 2.3 M), as the mass
of the core grows, its density will eventually be-
come so high that it becomes degenerate. The
central temperature will continue to rise. The
whole helium core will have a uniform temper-
ature because of the high conductivity of the de-
generate gas. If the mass of the star is larger than
0.26 M, the central temperature will eventually
reach about 100 million degrees, which is enough
for helium to burn to carbon in the triple alpha
process.

Helium burning will set in simultaneously in
the whole central region and will suddenly raise
its temperature. Unlike a normal gas, the degener-
ate core cannot expand, although the temperature
increases (cf. (11.16)), and therefore the increase
in temperature will only lead to a further accel-
eration of the rate of the nuclear reactions. When
the temperature increases further, the degeneracy
of the gas is removed and the core will begin to
expand violently. Only a few seconds after the ig-
nition of helium, there is an explosion, the helium
flash.

The energy from the helium flash is absorbed
by the outer layers, and thus it does not lead to
the complete disruption of the star. In fact the lu-
minosity of the star drops in the flash, because
when the centre expands, the outer layers con-
tract. The energy released in the flash is turned
into potential energy of the expanded core. Thus
after the helium flash, the star settles into a new
state, where helium is steadily burning to carbon
in a nondegenerate core.

After the helium flash the star finds itself on
the horizontal giant branch in the HR diagram.
The exact position of a star on the horizontal
branch after the helium flash is a sensitive func-
tion of its envelope mass. This in turn depends
on the amount of mass lost by the star in the he-
lium flash, which can vary randomly from star
to star. While the luminosity does not vary much
along the horizontal branch, the effective temper-
atures are higher for stars with less mass in the
envelope. The horizontal branch is divided into
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a blue and a red part by a gap corresponding to
the pulsational instability leading to RR Lyrae
variables (see Sect. 14.2). The form of the hori-
zontal branch for a collection of stars depends on
their metal-abundance, in the sense that a lower
metal abundance is related to a more prominent
blue horizontal branch. Thus the blue horizon-
tal branch in globular clusters with low metal-
abundances is strong and prominent (Sect. 16.3).
For stars with solar element abundances the hori-
zontal branch is reduced to a short stump, the red
clump, where it joins the red giant branch.

In intermediate-mass stars (2.3 Mg < M <
8 M), the central temperature is higher and the
central density lower, and the core will therefore
not be degenerate. Thus helium burning can set in
non-catastrophically as the central regions con-
tract. As the importance of the helium burning
core increases, the star first moves away from
the red giant branch towards bluer colours, but
then loops back towards the Hayashi track again.
An important consequence of these blue loops
is that they bring the star into the strip in the
HR diagram corresponding to the cepheid insta-
bility (Sect. 14.2). This gives rise to the classi-
cal cepheid variables, which are of central impor-
tance for determining distances in the Milky Way
and to the nearest galaxies.

In the most massive stars helium burning starts
before the star has had time to reach the red giant
branch. Some stars will continue moving to the
right in the HR diagram. For others this will pro-
duce a massive stellar wind and a large mass loss.
Stars in this evolutionary phase, such as P Cygni
and n Carinae, are known as luminous blue vari-
ables, LBV, and are among the brightest in the
Milky Way. If the star can retain its envelope it
will become a red supergiant. Otherwise it will
turn back towards the blue side of the HR dia-
gram, ending up as a Wolf-Rayet star.

The Asymptotic Giant Branch The evolu-
tion that follows core helium burning depends
strongly on the stellar mass. The mass determines
how high the central temperature can become and
the degree of degeneracy when heavier nuclear
fuels are ignited.

When the central helium supply is exhausted,
helium will continue to burn in a shell, while

the hydrogen burning shell is extinguished. In the
HR diagram the star will move towards lower ef-
fective temperature and higher luminosity. This
phase is quite similar to the previous red giant
phase of low-mass stars, although the temper-
atures are slightly hotter. For this reason it is
known as the asymptotic giant branch, AGB.

After the early phase, when the helium shell
catches up with the extinguished hydrogen shell,
the AGB star enters what is known as the ther-
mally pulsing phase, where hydrogen and helium
shell burning alternate. A configuration with two
burning shells is unstable, and in this phase the
stellar material may become mixed or matter may
be ejected into space in a shell, like that of a plan-
etary nebula.

The thermally pulsing AGB continues until ra-
diation pressure has led to the complete expul-
sion of the outer layers into a planetary nebula.
Low- and intermediate-mass giants (M < 8 M)
never become hot enough to ignite carbon burn-
ing in the core, which remains as a carbon—
oxygen white dwarf (Fig. 12.6).

The End of the Giant Phase After the end of
helium burning the evolution of a star changes
character. This is because the nuclear time scale
at the centre becomes short compared to the ther-
mal time scale of the outer layers. Secondly,
the energy released in nuclear reactions will be
carried away by neutrinos, instead of being de-
posited at the centre. In consequence, while the
thermonuclear burning follows the same pattern
as hydrogen and helium burning, the star as a
whole does not have time to react immediately.

In stars with masses around 10 M, either car-
bon or oxygen may be ignited explosively just
like helium in low-mass stars: there is a carbon
or oxygen flash. This is much more powerful than
the helium flash, and may make the star explode
as a supernova (Sects. 12.5 and 13.3).

For even larger masses the core remains non-
degenerate and burning will start non-catastro-
phically as the core goes on contracting and
becoming hotter. First carbon burning and sub-
sequently oxygen and silicon burning (see
Sect. 10.3) will be ignited. As each nuclear fuel
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a)

Fig. 12.4 Energy transport in the main sequence phase.
(a) The least massive stars (M < 0.26 M) are convective
throughout. (b) For 0.26 Mo < M < 1.5 M the core is
radiative and the envelope convective. (¢) Massive stars
(M > 1.5 M) have a convective core and a radiative en-
velope

is exhausted in the centre, the burning will con-
tinue in a shell. The star will thus contain sev-
eral nuclear burning shells. At the end the star
will consist of a sequence of layers differing in
composition, in massive stars (more massive than
15 M) all the way up to iron.

The central parts of the most massive stars
with masses larger than 15 M burn all the way
to iron “%Fe. All nuclear sources of energy will
then be completely exhausted. The structure of
a 30 solar mass star at this stage is schemati-
cally shown in Fig. 12.4. The star is made up
of a nested sequence of zones bounded by shells
burning silicon 28Si, oxygen '°0 and carbon '>C,
helium “He and hydrogen 'H. However, this is
not a stable state, since the end of nuclear re-
actions in the core means that the central pres-
sure will fall, and the core will collapse. Some
of the energy released in the collapse goes into
dissociating the iron nuclei first to helium and
then to protons and neutrons. This will further
speed up the collapse, just like the dissociation
of molecules speeds up the collapse of a pro-
tostar. The collapse takes place on a dynamical
time scale, which, in the dense stellar core, is
only a fraction of a second. The outer parts will
also collapse, but more slowly. In consequence,
the temperature will increase in layers contain-
ing unburnt nuclear fuel. This will burn explo-
sively, releasing immense amounts of energy in
a few seconds, principally in the form of neutri-
nos.

The final stages of stellar evolution may be
described as an implosion of the core, which is

briefly halted every time a new source of nu-
clear fuel becomes available for burning It is still
an open problem how exactly the energy released
in this collapse is transformed into the disrup-
tion of the entire star and the ejection of its outer
layers. It is also still unclear whether in a given
case the remnant will be a neutron star or a black
hole.

Although the exact mechanism is not yet un-
derstood, the end-point of the evolution of stars
more massive the about 8 M, is that the outer
layers explode as a supernova. In the dense cen-
tral core, the protons and electrons combine to
form neutrons. The core will finally consist al-
most entirely of neutrons, which become degen-
erate because of the high density. The degeneracy
pressure of the neutrons will stop the collapse of
a small mass core. However, if the mass of the
core is large enough, a black hole will probably
be formed.

12.5 The Final Stages of Evolution

The endpoints of stellar evolution can be seen
from Fig. 12.7. This shows the relation between
mass and central density for a body at zero tem-
perature, i.e. the final equilibrium when a mas-
sive body has cooled. There are two maxima
on the curve. The mass corresponding to the
left-hand maximum is called the Chandrasekhar
mass, Mcn ~ 1.2-1.4 M, and that correspond-
ing to the right-hand one, the Oppenheimer—
Volkoff mass, Moy ~ 1.5-2 M.

Let us first consider a star with mass less than
Mcy. Suppose the mass does not change. When
the nuclear fuel is exhausted, the star will become
a white dwarf, which will gradually cool down
and contract. In Fig. 12.5 it moves horizontally
to the right. Finally it will reach zero tempera-
ture and end up on the left-hand rising part of the
equilibrium curve. Its final equilibrium is a com-
pletely degenerate black dwarf.

If the mass of the star is larger than Mcy, but
smaller than Moy, it can continue cooling until it
reaches the right-hand rising section of the curve.
Again there is a stable final state, this time corre-
sponding to a completely degenerate neutron star.

An even more massive star with mass larger
than Moy will go on contracting past the den-
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sity corresponding to a neutron star. There is
then no longer any known possible stable equi-
librium, and the star must go on contracting to
form a black hole.

The only endpoints of stellar evolution pre-
dicted by theory are the two stable states of
Fig. 12.7 and the two extreme possibilities, col-
lapse to a black hole or explosive disruption.

'H, “He

Fig.12.5 The structure of a massive star (30 M) at a late
evolutionary stage. The star consists of layers with differ-
ent composition separated by nuclear burning shells

The preceding considerations are purely theo-
retical. The final evolutionary stages of real stars
involve many imperfectly known factors, which
may affect the final equilibrium. Perhaps most
important is the question of mass loss, which is
very difficult to settle either observationally or
theoretically. For example, in a supernova explo-
sion the whole star may be disrupted and it is very
uncertain whether what remains will be a neutron
star, a black hole or nothing at all. (The structure
of compact stars will be discussed in Chap. 15.)

A summary of the various evolutionary paths
is given in Fig. 12.8.

12.6 The Evolution of Close Binary
Stars

If the components of a binary star are well sep-
arated, they do not significantly perturb one an-
other. When studying their evolution, one can re-
gard them as two single stars evolving indepen-
dently, as described above. However, in close bi-
nary pairs, this will no longer be the case.

Close binary stars are divided into three
classes, as shown in Fig. 12.9: detached, semide-
tached and contact binaries. The figure-eight

Fig. 12.6 The usual endpoint for the development of
a star with a mass of less than three solar masses,
is a white dwarf, with an expanding planetary neb-
ula around it. On the left, the planetary nebula NGC
6369, photographed with the 8-meter Gemini South tele-

scope. For a massive star, the life ends with a super-
nova explosion. On the right, the supernova remnant Cas-
siopeia A on radio wavelengths. The image was created
by the VLA telescope. (Images Gemini Observatory/Abu
Team/NOAO/AURA/NSF and NRAO/AUI)
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Fig. 12.7 The evolutionary end points of stars with dif-
ferent masses shown as a function of central density. The
curve shows the behaviour of the central density of com-
pletely degenerate (7' = 0 K) bodies. The Chandrasekhar
mass Mcy and the Oppenheimer—Volkoff mass Moy cor-
respond to maxima on this curve

curve drawn in the figure is an equipotential sur-
face called the Roche surface. If the star becomes
larger than this surface, it begins to lose mass to
its companion through the waist of the Roche sur-
face.

During the main sequence phase the stellar ra-
dius does not change much, and each component
will remain within its own Roche lobe. When
the hydrogen is exhausted, the stellar core will
rapidly shrink and the outer layers expand, as we
have seen. At this stage a star may exceed its
Roche lobe and mass transfer may set in.

Close binary stars are usually seen as eclipsing
binaries. One example is Algol in the constella-
tion Perseus. The components in this binary sys-
tem are a normal main sequence star and a sub-
giant, which is much less massive than the main
sequence star. The subgiant has a high luminos-
ity and thus has apparently already left the main
sequence. This is unexpected, since the compo-
nents were presumably formed at the same time,
and the more massive star should evolve more
rapidly. The situation is known as the Algol para-
dox: for some reason, the less massive star has
evolved more rapidly.

In the 1950’s a solution to the paradox pro-
posed that the subgiant was originally more mas-
sive, but that it had lost mass to its companion
during its evolution. Since the 1960’s mass trans-
fer in close binary systems has been much stud-

ied, and has turned out be a very significant factor
in the evolution of close binaries.

As an example, let us consider a close binary,
where the initial masses of the components are
1 and 2 solar masses and the initial orbital pe-
riod 1.4 days (Fig. 12.10). After evolving away
from the main sequence the more massive com-
ponent will exceed the Roche limit and begin to
lose mass to its companion. Initially the mass will
be transferred on the thermal time scale, and after
a few million years the roles of the components
will be changed: the initially more massive com-
ponent has become less massive than its compan-
ion.

The binary is now semidetached and can be
observed as an Algol-type eclipsing binary. The
two components are a more massive main se-
quence star and a less massive subgiant filling its
Roche surface. The mass transfer will continue,
but on the much slower nuclear time scale. Fi-
nally, mass transfer will cease and the less mas-
sive component will contract to a 0.6 My white
dwarf.

The more massive 2.4 M, star now evolves
and begins to lose mass, which will accumulate
on the surface of the white dwarf. The accumu-
lated mass may give rise to nova outbursts, where
material is ejected into space by large explosions.
Despite this, the mass of the white dwarf will
gradually grow and may eventually exceed the
Chandrasekhar mass. The white dwarf will then
collapse and explode as a type I supernova.

As a second example, we can take a massive
binary with the initial masses 20 and 8 My and
the initial period 4.7 days (Fig. 12.11). The more
massive component evolves rapidly, and at the
end of the main sequence phase, it will transfer
more than 15 M of its material to the secondary.
The mass transfer will occur on the thermal time
scale, which, in this case, is only a few ten thou-
sand years. The end result is a helium star, having
as a companion an unevolved main sequence star.
The properties of the helium star are like those of
a Wolf-Rayet star (Fig. 12.12).

Helium continues to burn to carbon in the core
of the helium star, and the mass of the carbon core
will grow. Eventually the carbon will be explo-
sively ignited, and the star will explode as a su-
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Fig. 12.8 Evolution schemes for stars with different
masses. The radius is scaled to be the same in all draw-
ings. In reality, there are vast differences in the sizes of
different stars and different phases of evolution. In the be-
ginning (/) a gas cloud is contracting rapidly in free fall.
Because the gas is quite rarefied, radiation escapes easily
from the cloud. As the density increases, radiation trans-
port becomes more difficult, and the released energy tends
to warm up the gas. The contraction lasts until the gas is
completely ionised, and the star, which has become a pro-
tostar, is in hydrostatic equilibrium (2). The star is convec-
tive throughout its interior.

Now evolution continues on a thermal time scale. The con-
traction is much slower than in the free-fall phase. The
phases of further evolution are determined by the mass M
of the star. For M < 0.08 M the temperature in the cen-
tre does not rise high enough for hydrogen burning, and
these stars contract to planetlike brown dwarfs. Stars with
M > 0.08 M start hydrogen burning when the tempera-
ture has reached about 4 x 10° K. This is the beginning
of the main sequence phase. In the main sequence, the
lowest-mass stars with 0.08 Mo < M < 0.26 M are en-
tirely convective, and thus they remain homogeneous (3).
Their evolution is very slow, and after all the hydrogen has
been burnt to helium, they contract to white dwarfs (4).
The increasing temperature makes the stars with M >
0.26 My radiative in the centre as the opacity de-
creases (5). The low-mass stars with 0.26 Mg < M <
1.5 My remain radiative in the centre during the main
sequence phase (6) as they burn their hydrogen through
the pp chain. The outer part is convective. At the end of
the main sequence phase, hydrogen burning continues in
a shell surrounding the helium core (7).

M=30 My

The outer part expands, and the giant phase begins. The
contracting helium core is degenerate and warms up. At
about 108 K, the triple alpha process begins and leads im-
mediately to the helium flash (8). The explosion is damped
by the outer parts, and helium burning goes on in the
core (9). Hydrogen is still burning in an outer shell. As the
central helium is exhausted, helium burning moves over to
a shell (/0). At the same time, the outer part expands and
the star loses some of its mass. The expanding envelope
forms a planetary nebula (/7). The star in the centre of the
nebula becomes a white dwarf (12).

In the upper main sequence with M > 1.5 M energy is
released through the CNO cycle, and the core becomes
convective, while the outer part is radiative (/3). The main
sequence phase ends as the hydrogen in the core is ex-
hausted, and shell burning begins (/4). The helium core
remains convective and nondegenerate, and helium burn-
ing begins without perturbations (/5 and /9). Afterwards,
helium burning moves over to a shell (/6 and 20). For
stars with 3 Mo < M < 15 Mg, the carbon in the core is
degenerate, and a carbon flash occurs (/7). This leads to
a supernova explosion (/8) and possibly to the complete
destruction of the star.

For the most massive stars with M > 15 M the carbon
core remains convective, and carbon burns to oxygen and
magnesium. Finally, the star consists of an iron core sur-
rounded by shells with silicon, oxygen, carbon, helium
and hydrogen (217). The nuclear fuel is now exhausted, and
the star collapses on a dynamical time scale. The result is
a supernova (22). The outer parts explode, but the remain-
ing core continues to contract to a neutron star or a black
hole
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Fig. 12.8 (Continued)
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c)

Fig. 12.9 The types of close binary systems: (a) de-
tached, (b) semidetached and (c) contact binary

pernova. The consequences of this explosion are
not known, but let us suppose that a 2 M com-
pact remnant is left. As the more massive star ex-
pands, its stellar wind will become stronger, giv-
ing rise to strong X-ray emission as it hits the
compact star. This X-ray emission will only cease
when the more massive star exceeds its Roche
surface.

10 11 H on the surface 12

central
star

The system will now rapidly lose mass and
angular momentum. A steady state is finally
reached when the system contains a 6 M helium
star in addition to the 2 Mo compact star. The
helium star is seen as a Wolf-Rayet star, which,
after about a million years, explodes as a super-
nova. This will probably lead to the breakup of
the binary system. However, for certain values
of the mass, the binary may remain bound. Thus
a binary neutron star may be formed.

12.7 Comparison with Observations

The most important direct support for the theo-
retical evolutionary models is obtained from the
properties of observed HR diagrams. If the the-
oretical models are correct, the observed number
of stars should reflect the duration of the various
evolutionary phases. These are given for stars of
different masses in Table 12.1. The stars are most
numerous along the main sequence. Giants are
also common and, in addition to these, there are
white dwarfs, subgiants, etc. The sparsely popu-
lated region to the right of the main sequence, the
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Hertzsprung gap, is explained by the rapid tran-
sition from the main sequence to the giant phase.

The cepheids provide an important test for
the evolutionary models. The pulsations and the
relation between period and luminosity for the
cepheids can be understood on the basis of the-
oretical stellar models.

The evolutionary models can also explain the
HR diagrams of star clusters. Let us assume that
all the stars in a cluster were formed at the same
time. In the youngest systems, the associations,
the stars will mainly be found on the upper main

Fig. 12.10 Evolution of a low-mass binary: (a) both
components on the main sequence; (b) mass transfer from
the more massive component; (c) light subgiant and mas-
sive main sequence star; (d) white dwarf and main se-
quence star; (e) mass transferred to the white dwarf from
the more massive component leads to nova outbursts;
(f) the white dwarf mass exceeds the Chandrasekhar mass
and explodes as a type I supernova

sequence, since the most massive stars evolve
most rapidly. To the right of the main sequence,
there will be less massive T Tauri stars, which are

a) RIS e
L @< 08
\\_g’/ -
b)
. 08
20 2=
c) Heliumstar ™7~
se . O

9 Compact star ,,‘J

(2 O 2

Stellar wind ~

e) N __- :'
f)
) e S ey,
& { @ He x‘[;r"\
o ""'-w-,,n_‘.‘___‘_..I/
h) 0Oud 3 Young
compact @ compact star
star
2 -
Young
Old compact compact
star star

Fig. 12.11 Evolution of a massive binary. It has been
assumed that the supernova explosion of a 5 M helium
star leaves a 2 M compact remnant (neutron star or black
hole). (a) Main sequence phase; (b) beginning of the first
mass transfer phase; (¢) end of the first mass transfer
phase; the first Wolf—Rayet phase begins; (d) the helium
star (Wolf—Rayet star) has exploded as a supernova; (e) the
23 M component becomes a supergiant; the compact
component is a strong X-ray source; (f) beginning of the
second mass transfer phase; the X-ray source is throttled
and large-scale mass loss begins; (g) second Wolf-Rayet
phase; (h) the 6 M helium star has exploded as a super-
nova; the binary may or may not be disrupted, depending
on the remaining mass
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Fig. 12.12 The Wolf-Rayet star WR 104 photographed
by the 10-m Keck telescope. The spiral is dust and gas
which is thrown out from the rotating binary system. The
spiral “pinwheel” is seen to make a full revolution in about
220 days. (Photo U.C. Berkeley Space Sciences Labora-
tory/W.M. Keck Observatory)

still contracting. In intermediate age open clus-
ters, the main sequence will be well developed
and its upper end should bend to the right, since
the most massive stars will already have begun to
evolve off the main sequence. In the old globular
clusters, the giant branch should increase in im-
portance in the older clusters. These predictions
are confirmed by the observations, which will be
further discussed in Chap. 16 on star clusters.

Of course, the most detailed observations can
be made of the Sun, which is therefore a crucial
point of comparison for the theoretical models.
If a star of one solar mass with an initial com-
position of 71 % hydrogen, 27 % helium and
2 % heavier elements is allowed to evolve for
5000 million years, it will be very similar to our
present Sun. In particular, it will have the same
radius, surface temperature and luminosity. Ac-
cording to calculations, about half of the Sun’s
supply of hydrogen fuel has been consumed. The
Sun will go on shining like a normal main se-
quence star for another 5000 million years, before
there will be any dramatic change.

Some problems remain in regard to the obser-
vations. One is the solar neutrino problem. The

neutrinos produced by solar nuclear reactions
have been observed since the beginning of the
1970’s by the techniques described in Sect. 3.7.
Only the neutrinos formed in the relatively rare
ppIll reaction are energetic enough to be ob-
served in this way. Their observed number is too
small: whereas the models predict about 5 units,
the observations have consistently only registered
1-2.

The discrepancy may be due to a fault in
the observational technique or to some unknown
properties of the neutrinos. However, if the solar
models are really in error, the central temperature
of the Sun would have to be about 20 % lower
than thought, which would be in serious conflict
with the observed solar luminosity. One possibil-
ity is that some of the electron neutrinos change
to other, unobservable particles during their pas-
sage to Earth. (See also Sect. 12.1.)

A second problem is the observed abundance
of lithium and beryllium. The solar surface con-
tains a normal abundance of beryllium, but very
little lithium. This should mean that during its
contraction, the Sun was still fully convective
when the central temperature was high enough
to destroy lithium (3 x 10 K), but not beryl-
lium (4 x 10° K). However, according to the stan-
dard solar evolution models, convection ceased in
the centre already at a temperature of 2 x 10° K.
One suggested explanation is that the convection
has later carried down lithium to layers where the
temperature is high enough to destroy it.

12.8 The Origin of the Elements

There are just under a hundred naturally occur-
ring elements, and about 300 isotopes in the solar
system (Fig. 12.13). In Sect. 12.4, we have seen
how the elements up to iron are produced when
hydrogen burns to helium and helium further to
carbon, oxygen and heavier elements.

Almost all nuclei heavier than helium were
produced in nuclear reactions in stellar interiors.
In the oldest stars, the mass fraction of heavy
elements is only about 0.02 %, whereas in the
youngest stars it is a few per cent. Neverthe-
less, most of the stellar material is hydrogen and
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Fig. 12.13 Element
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helium. According to the standard cosmological
model, those were formed in the early stages of
the Universe, when the temperature and density
were suitable for nuclear reactions. (This will be
discussed in Chap. 20.) Although helium is pro-
duced during the main sequence stellar evolution,
very little of it is actually returned into space to be
incorporated into later stellar generations. Most
of it is either transformed into heavier elements
by further reactions, or else remains locked up in-
side white dwarf remnants. Therefore the helium
abundance does not increase by much due to stel-
lar processes.

The most important nuclear reactions leading
to the build-up of the heavy nuclei up to iron were
presented in Sect. 11.3. The probabilities of the
various reactions are determined either by exper-
iments or by theoretical calculations. When they

1
60 80 100 120 140 160 180 200

Mass number A

are known, the relative abundances of the various
nuclei produced can be calculated.

The formation of elements heavier than iron
requires an input of energy, and thus they cannot
be explained in the same manner. Still heavy nu-
clei are continually produced. In 1952 technetium
was discovered in the atmosphere of a red giant.
The half-life of the most longlived isotope *8Tc is
about 1.5 x 10° years, so that the observed tech-
netium must have been produced in the star.

Most of the nuclei more massive than iron are
formed by neutron capture (Fig. 12.14). Since
the neutron does not have an electric charge, it
can easily penetrate into the nucleus. The prob-
ability for neutron capture depends both on the
kinetic energy of the incoming neutron and on
the mass number of the nucleus. For example, in
the solar system the abundances of isotopes show
maxima at the mass numbers A = 70-90, 130,
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Fig. 12.14 Neutron capture paths for the s-process and
r-process (from left to right). The s-process follows a path
along the line of beta stability. The stable r-process nuclei
(small circles) result from beta decay of their neutron rich
progenitors on the shaded path shown lower. Beta decay
occurs along straight lines A = const. The closed neutron

138, 195 and 208. These mass numbers cor-
respond to nuclei with closed neutron shells at
the neutron numbers N = 50, 82, and 126. The
neutron capture probability for these nuclei is
very small. The closed shell nuclei thus react
more slowly and are accumulated in greater abun-
dances.

In a neutron capture, a nucleus with mass
number A is transformed into a more massive nu-
cleus:

Z,A)+n—> (Z,A+1)+y.

The newly formed nucleus may be unstable to
B decay, where one neutron is transformed into
a proton:

(Z,A+D) > (Z+1,A+ 1) +e +7e.

Two kinds of neutron capture processes are en-
countered, depending on the value of the neutron
flux. In the slow s-process, the neutron flux is

120
N—

130 140 150 160 170 180 190

shells in nuclei at N = 50, 82 and 126 correspond to abun-
dance peaks in s-process nuclei at A = 88, 138 and 208,
and in r-process nuclei at A = 80, 130 and 195. (Seeger,
P.A., Fowler, W.A., Clayton, D.D. (1965): Astrophys. J.
Suppl. 11, 121)

so small that any 8 decays have had time to oc-
cur before the next neutron capture reaction takes
place. The most stable nuclei up to mass num-
ber 210 are formed by the s-process. These nu-
clei are said to correspond to the § stability val-
ley. The s-process explains the abundance peaks
at the mass numbers 88, 138 and 208.

When the neutron flux is large, § decays do
not have time to happen before the next neu-
tron capture. One then speaks of the rapid -
process, which gives rise to more neutron-rich
isotopes. The abundance maxima produced by
the r-process lie at mass numbers about ten units
smaller than those of the s-process.

A neutron flux sufficient for the s-process is
obtained in the course of normal stellar evolu-
tion. For example, some of the carbon and oxy-
gen burning reactions produce free neutrons. If
there is convection between the hydrogen and he-
lium burning shells, free protons may be carried
into the carbon-rich layers. Then the following
neutron-producing reaction chain becomes im-
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portant: the isotopes '34W, 0Pt and '°Hg formed by the
1 5 fission of lead.

C+p - "N+, All the preceding reaction products are ejected

BN — BC+et +ve, into the interstellar medium in the supernova

BC 44 He — 0 +n.

The convection can also carry the reaction prod-
ucts nearer to the surface.

The neutron flux required for the r-process
is about 10?2 ¢cm™3, which is too large to be
produced during normal stellar evolution. The
only presently known site where a large enough
neutron flux is expected is near a neutron star
forming in a supernova explosion. In this case,
the rapid neutron capture leads to nuclei that
cannot capture more neutrons without becoming
strongly unstable. After one or more rapid S de-
cays, the process continues.

The r-process stops when the neutron flux de-
creases. The nuclei produced then gradually de-
cay by the B-process towards more stable iso-
topes. Since the path of the r-process goes about
ten mass units below the stability valley, the abun-
dance peaks produced will fall about ten units
below those of the s-process. This is shown in
Fig. 12.11. The most massive naturally occurring
elements, such as uranium, thorium and pluto-
nium, are formed by the r-process.

There are about 40 isotopes on the proton-rich
side of the $ stability valley that cannot be pro-
duced by neutron capture processes. Their abun-
dances are very small, relative to the neighbour-
ing isotopes. They are formed in supernova ex-
plosions at temperatures higher than 10° K by re-
actions known as the p-process. At this tempera-
ture, pair formation can take place:

y —et e .

The positron may either be annihilated immedi-
ately or be consumed in the reaction

et +(Z,A) = (Z+1,4) +7e.
Another reaction in the p-process is
Z,A)+p—>Z+1,A+1)+vy.

Finally, the fission of some heavier isotopes may
give rise to p-process nuclei. Examples of this are

explosion. Collisions between cosmic rays and
heavy nuclei then finally give rise to the light el-
ements lithium, beryllium and boron. Thus the
abundances of essentially all naturally occurring
isotopes can be explained.

During succeeding generations of stars the rel-
ative abundance of heavy elements increases in
the interstellar medium. They can then be incor-
porated into new stars, planets—and living be-
ings.

12,9 Example

Example 12.1 An interstellar cloud has a mass
of one solar mass and density of 10! hydrogen
atoms per cm?. Its rotation period is 1000 years.
What is the rotation period after the cloud has
condensed into a star of solar size?

The angular momentum is L = I w, where w is
the angular velocity and 7 is the moment of iner-
tia. For a homogeneous sphere

2 2
I =-MR~,
5
where M is the mass and R the radius. From the
conservation of the angular momentum we get

L=Lw=hw

I12m _ 2
P o P
2 2 2
I MR Ry
= P2=P1—=P1§ ;21’1 — .
I EMR; Ry

where P; and P, are the rotation periods before
and after the collapse. The mass of the cloud is

4 3
M:gan

4
= gnR3 x 10'® x 1.6734 x 107%7 kg

=1Mg=1.989 x 10°° kg.



12.10 Exercises

281

Solving for the radius we get R =3 x 10'3 m.
The rotation period after the collapse is

6.96 x 108 m?
Py=1000ax (2> 1
3x 1013 m

=54x10""a=17s.

This is several orders of magnitude shorter than
the actual period. Somehow the star has to get rid
of most of its angular momentum during the pro-
cess.

12.10 Exercises

Exercise 12.1 Find the free fall time scale for
a hydrogen cloud, if the density of Hy molecules
is 3000 cm 3. Assume that stars condense from
such clouds, there are 100 clouds in the Galaxy,

the mass of each cloud is 5 x 10*Mg, and 10 %
of the mass is converted into stars. Also assume
that the average mass of a star is 1 Mg. How
many stars are born in one year?

Exercise 12.2 The mass of Vega (spectral class
AOV) is 2Mg, radius 3 Ry, and luminosity
60 L. Find its thermal and nuclear time scales.

Exercise 12.3 Assume that a star remains 10°
years in the main sequence and burns 10 % of its
hydrogen. Then the star will expand into a red gi-
ant, and its luminosity will increase by a factor
of 100. How long is the red giant stage, if we as-
sume that the energy is produced only by burning
the remaining hydrogen?



The Sun

The Sun is our nearest star. It is important for
astronomy because many phenomena which can
only be studied indirectly in other stars can be di-
rectly observed in the Sun (e.g. stellar rotation,
starspots, the structure of the stellar surface). Our
present picture of the Sun is based both on ob-
servations and on theoretical calculations. Some
observations of the Sun disagree with the theoret-
ical solar models. The details of the models will
have to be changed, but the general picture should
remain valid.

13.1 Internal Structure

The Sun is a typical main sequence star. Its prin-
cipal properties are:

Mass m=Mg = 1989 x 103 kg
Radius R=Ry |= 6.960x10%m
Mean density o = | 1409 kg/m®
Central density Oc = 1.6 x 10° kg/m?
Luminosity L=Ly = 39x10°W
Effective T. = 5785K
temperature
Central temperature | T¢ = 1.5x10"K
Absolute Mol = 472
bolometric
magnitude
Absolute visual My = 479
magnitude
Spectral class G2V
Colour indices B-V = 0.62

U—-B = 0.10

© Springer-Verlag Berlin Heidelberg 2017
H. Karttunen et al. (eds.), Fundamental Astronomy, DOI 10.1007/978-3-662-53045-0_13

Surface X = 0.71
chemicql. Y — 027
composition
V4 = 0.02
Rotational period
at the equator 25d
at latitude 60° 29d

Distance from
the centre [Rg]

Fig. 13.1 The distribution of temperature, pressure, en-
ergy production and mass as functions of radius in the Sun

On the basis of these data, the solar model
shown in Fig. 13.1 has been calculated. The en-
ergy is produced by the pp chain in a small cen-
tral region. 99 % of the solar energy is produced
within a quarter of the solar radius.

The Sun produces energy at the rate of 4 x
10%® W, which is equivalent to changing about
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Fig. 13.2 The interior and

surface of the Sun. The
various kinds of solar
phenomena are
schematically indicated.
(Based on Van Zandt, R.P.
(1977): Astronomy for the
Amateur, Planetary
Astronomy, Vol. 1, 3rd edn.
(published by the author,
Peoria, II1.))
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four million tonnes of mass into energy every
second. The mass of the Sun is so large, about
330,000 times that of the Earth, that during the
whole main sequence lifetime of the Sun less than
0.1 % of its mass is turned into energy.

When the Sun formed about 5000 million
years ago, its composition was the same every-
where as its present surface composition. Since
energy production is concentrated at the very cen-
tre, hydrogen is consumed most rapidly there. At
about a quarter of the radius the hydrogen abun-
dance is still the same as in the surface layers,
but going inwards from that point it rapidly de-
creases. In the central core only 40 % of the ma-
terial is hydrogen. About 5 % of the hydrogen in
the Sun has been turned into helium.

The radiative central part of the Sun extends
to about 70 % of the radius. At that radius the
temperature has dropped so much that the gas
is no longer completely ionised. The opacity of
the solar material then strongly increases, inhibit-

ing the propagation of radiation. In consequence,
convection becomes a more efficient means of en-
ergy transport. Thus the Sun has a convective en-
velope (Fig. 13.2).

The Solar Neutrino Problem The central nu-
clear reactions produce neutrinos at several of the
steps in the pp chain (see Fig. 11.5). These neutri-
nos can propagate freely through the outer layers,
and thus give direct information about conditions
near the centre of the Sun. When neutrinos from
the Sun were first observed in the 1970’s, their
number was found to be only about a third of
what was predicted. This disagreement is called
the solar neutrino problem.

In the first experiments only neutrinos from
the ppll and pplll branches were observed
(Sect. 11.3). Since only a small fraction of the
solar luminosity is produced in these reactions,
it was not clear what were the consequences
of these results for solar models. In the 1990’s
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neutrinos produced in the ppl branch, the main
branch of the pp chain, were observed. Although
the disagreement with the standard models was
slightly smaller in these observations (about 60 %
of the predicted flux was observed), the neutrino
problem still remained.

Perhaps the most popular explanation for the
solar neutrino problem was based on neutrino
oscillations. According to this explanation, if
neutrinos have a small mass (about 1072 eV),
an electron neutrino could change into a w or
a T neutrino as it passed through the outer parts
of the Sun. In the early experiments only electron
neutrinos were observed, representing only part
of the total number of neutrinos produced.

In 2001 the Canadian Sudbury neutrino obser-
vatory (SNO) announced results that seemed to
solve the problem. The SNO can detect the flux of
all different neutrinos and the fraction of the elec-
tron neutrinos. The measurements showed that
the total neutrino flux was indeed consistent with
the predictions of the solar models, but only 35 %
of the flux consisted of electron neutrinos. Thus
65 % of the solar electron neutrinos had changed
to u or T neutrinos while travelling from the Sun
to the Earth. Similar observations were also made
in a Japanese neutrino observatory. Among the
pioneers of the neutrino astronomy are Raymond
Davis and Masatoshi Koshiba who shared the No-
bel prize in physics in 2002.

The solar neutrino problem can now be con-
sidered to be solved. The solution is a great suc-
cess for the standard solar model. But it has also
revealed the existence of neutrino oscillations,
proving that neutrinos have a small but non-zero
rest mass. This shows that the standard model of
particle physics needs to be revised in some re-
spects.

The Solar Rotation As soon as telescopes
were introduced, it was observed from the mo-
tions of sunspots that the Sun is rotating with
a rotational period of about 27 days. As early as
1630 Christoph Scheiner showed that there was
differential rotation: the rotational period near the
poles was more than 30 days, while it was only
25 days at the equator. The rotational axis of the

Sun is inclined at 7° with respect to the plane of
the ecliptic, so that the North Pole of the Sun is
best visible from the Earth in September.

The motions of sunspots still give the best in-
formation on the rotation near the surface of the
Sun. Other surface features also have been used
for this purpose. The rotational velocity has also
been measured directly from the Doppler effect.
The angular velocity is usually written

2 =A— Bsin’vy, (13.1)
where ¢ is the latitude with respect to the equa-
tor. The measured values of the coefficients are
A =14.5 and B = 2.9 degrees/day.

The rotational velocity deeper down in the
Sun cannot be directly observed. In the 1980’s
a method to estimate the rotation in the interior
became available, when it became possible to
measure the frequencies of solar oscillations from
the variations in spectral lines. These oscillations
are essentially sound waves produced by turbu-
lent gas motions in the convection zone. These
sound waves have calculable oscillation periods
(about 3—12 minutes), which depend on the con-
ditions in the solar interior. By comparing the ob-
served and theoretical values one can get infor-
mation about the conditions deep inside the Sun.
The idea of the method is the same as that used
when studying the interior of the Earth by means
of waves from earthquakes, and it is therefore
called helioseismology.

Using helioseismology, models for the so-
lar rotation throughout the convection zone have
been deduced. It appears that the angular velocity
in the whole convection zone is almost the same
as at the surface, although it decreases slightly
with radius near the equator, and increases near
the poles. The angular velocity of the radiative
core is still uncertain, but there are indications
that the core is rotating as a solid body with ap-
proximately the average surface angular velocity.
At the bottom of the convection zone there is a
thin layer known as the tachocline, where the an-
gular velocity changes rapidly with radius. The
internal solar rotation according to the helioseis-
mological studies is shown in Fig. 13.3.
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The solar differential rotation is maintained by
gas motions in the convection zone. Explaining
the observed behaviour is a difficult problem that
is not yet completely understood.

13.2 The Atmosphere

The solar atmosphere is divided into the photo-
sphere and the chromosphere. Outside the actual
atmosphere, the corona extends much further out-
wards.

The Photosphere The innermost layer of the
atmosphere is the photosphere, which is only
about 300-500 km thick. The photosphere is
the visible surface of the Sun, where the den-
sity rapidly increases inwards, hiding the interior
from sight. The temperature at the inner bound-
ary of the photosphere is 8000 K and at the outer
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Fig. 13.3 The rotation rate of the Sun inferred from he-
lioseismological observations. The equator is at the hori-
zontal axis and the pole is at the vertical axis, both axes
being labelled by fractional radius. Some contours are la-
belled in nHz, and, for clarity, selected contours are shown
as bold. (430 nHz is about 26.9 days.) The dashed circle is
at the base of the convection zone and the tick marks at the
edge of the outer circle are at latitudes 15°, 30°, 45°, 60°,
75°. The shaded area indicates the region in the Sun where
no reliable inference can be made with present data. The
slanted dotted lines are at an angle of 27° with the rotation
axis. (Adapted from Schou et al. 1998.) (J. Christensen—
Dalsgaard 2007, astro-ph/0610942, Fig. 2)

boundary 4500 K. Near the edge of the solar
disk, the line of sight enters the photosphere at
a very small angle and never penetrates to large
depths. Near the edges one therefore only sees
light from the cooler, higher layers. For this rea-
son, the edges appear darker; this phenomenon
is known as limb darkening. Both the continuous
spectrum and the absorption lines are formed in
the photosphere, but the light in the absorption
lines comes from higher layers and therefore the
lines appear dark.

The solar convection is visible on the surface
as the granulation (Fig. 13.4), an uneven, con-
stantly changing granular pattern. At the bright
centre of each granule, gas is rising upward, and
at the darker granule boundaries, it is sinking
down again. The size of a granule seen from
the Earth is typically 1”, corresponding to about
1000 km on the solar surface. There is also
a larger scale convection called supergranulation
in the photosphere. The cells of the supergranu-
lation may be about 1’ in diameter. The observed
velocities in the supergranulation are mainly di-
rected along the solar surface.

The Chromosphere Outside the photosphere
there is a layer, perhaps about 500 km thick,
where the temperature increases from 4500 K to
about 6000 K, the chromosphere. Outside this
layer, there is a transition region of a few thou-
sand kilometres, where the chromosphere gradu-
ally goes over into the corona. In the outer parts
of the transition region, the kinetic temperature is
already about 10° K.

Normally the chromosphere is not visible, be-
cause its radiation is so much weaker than that
of the photosphere. However, during total solar
eclipses, the chromosphere shines into view for
a few seconds at both ends of the total phase,
when the Moon hides the photosphere com-
pletely. The chromosphere then appears as a thin
reddish sickle or ring.

During eclipses the chromospheric spectrum,
called the flash spectrum, can be observed
(Fig. 13.5). It is an emission line spectrum with
more than 3000 identified lines. Brightest among
these are the lines of hydrogen, helium and cer-
tain metals.
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Fig. 13.4 The granulation
of the solar surface. The
granules are produced by
streaming gas. Their
typical diameter is

1000 km. The picture was
taken in May 13, 2005 with
the Swedish one metre
solar telescope on La
Palma. (Photograph Tom
Berger, Royal Swedish
Academy of Sciences,
ISP/RSAS)

Fig. 13.5 Flash spectrum
of the solar chromosphere,
showing bright emission
lines

One of the strongest chromospheric emission
lines is the hydrogen Balmer « line (Fig. 13.6)
at a wavelength of 656.3 nm. Since the H, line
in the normal solar spectrum is a very dark ab-
sorption line, a photograph taken at this wave-
length will show the solar chromosphere. For
this purpose, one uses narrow-band filters letting
through only the light in the Hy line. The re-
sulting pictures show the solar surface as a mot-
tled, wavy disk. The bright regions are usually
the size of a supergranule, and are bounded by
spicules (Fig. 13.7). These are flamelike struc-
tures rising up to 10,000 km above the chromo-
sphere, and lasting for a few minutes. Against

the bright surface of the
dark streaks; at the edges, they look like bright
flames.

Sun, they look like

The Corona The chromosphere gradually goes
over into the corona. The corona is also best seen
during total solar eclipses (Fig. 13.8). It then ap-
pears as a halo of light extending out to a few
solar radii. The surface brightness of the corona
is about that of the full moon, and it is therefore
difficult to see next to the bright photosphere.
The inner part of the corona, the K corona,
has a continuous spectrum formed by the scatter-
ing of the photospheric light by electrons. Fur-
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Fig. 13.6 The solar
surface in the hydrogen Hy
line. Active regions appear
bright; the dark filaments
are prominences. Limb
darkening has been
removed artificially, which
brings to light spicules and
prominences above the
limb. The photograph was
taken in October 1997.
(Photograph Big Bear
Solar Observatory/NJIT)

Fig. 13.7 Spicules,
flamelike uprisings near the
edge of the solar disc.
(Photograph Big Bear
Solar Observatory)

ther out, a few solar radii from the surface, is the
F corona, which has a spectrum showing Fraun-
hofer absorption lines. The light of the F corona
is sunlight scattered by dust.

In the latter part of the 19th century strong
emission lines, which did not correspond to those
of any known element, were discovered in the

corona (Fig. 13.9). It was thought that a new ele-
ment, called coronium, had been found—a little
earlier, helium had been discovered in the Sun
before it was known on Earth. About 1940, it
was established that the coronal lines were due to

highly ionised atoms, e.g. thirteen times ionised
iron. Much energy is needed to remove so many
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Fig. 13.8 Previously, the
corona could be studied
only during total solar
eclipses. The picture is
from the eclipse on
March 7, 1970. Nowadays
the corona can be studied
continuously using

a device called the
coronagraph

Fig. 13.9 The presence of
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electrons from the atoms. The entire corona has
to have a temperature of about a million de-
grees.

A continuous supply of energy is needed in
order to maintain the high temperature of the
corona. According to earlier theories, the energy
came in the form of acoustic or magnetohydrody-
namic shock waves generated at the solar surface
by the convection. Most recently, heating by elec-

tric currents induced by changing magnetic fields
has been suggested. Heat would then be gener-
ated in the corona almost like in an ordinary light
bulb.

In spite of its high temperature the coronal gas
is so diffuse that the total energy stored in it is
small. It is constantly streaming outwards, gradu-
ally becoming a solar wind, which carries a flux
of particles away from the Sun. The gas lost in
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Fig. 13.10 The sunspots
are the form of solar
activity that has been
known for the longest time.
The photograph was taken
with the Swedish 1-meter
Solar Telescope in July
2002. (Photograph Royal
Swedish Academy of
Sciences)

this way is replaced with new material from the
chromosphere.

13.3 Solar Activity

Sunspots The clearest visible sign of solar ac-
tivity are the sunspots. The existence of sunspots
has been known for long (Fig. 13.10), since the
largest ones can be seen with the naked eye by
looking at the Sun through a suitably dense layer
of fog. More precise observations became avail-
able beginning in the 17th century, when Galilei
started to use the telescope for astronomical ob-
servations.

A sunspot looks like a ragged hole in the solar
surface. In the interior of the spot there is a dark
umbra and around it, a less dark penumbra. By
looking at spots near the edge of the solar disk, it
can be seen that the spots are slightly depressed
with respect to the rest of the surface. The surface
temperature in a sunspot is about 1500 K below

that of its surroundings, which explains the dark
colour of the spots.

The diameter of a typical sunspot is about
10,000 km and its lifetime is from a few days to
several months, depending on its size. The larger
spots are more likely to be long-lived. Sunspots
often occur in pairs or in larger groups. By fol-
lowing the motions of the spots, the period of ro-
tation of the Sun can be determined.

The variations in the number of sunspots
have been followed for almost 250 years. The
frequency of spots is described by the Ziirich
sunspot number Z:

Z=C(S+10G), (13.2)

where S is the number of spots and G the num-
ber of spot groups visible at a particular time. C is
a constant depending on the observer and the con-
ditions of observation.

In Fig. 13.11, the variations in the Ziirich
sunspot number between the 18th century and
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Fig. 13.11 The Ziirich sunspot number from 1700 to 2001. Prior to 1700 there are only occasional observations. The
number of sunspots and spot groups varies with a period of about 11 years

1

Fig.13.12 Left: During a sunspot maximum (Sept 27, 2001) the Sun is dotted by numerous spots. Right: Exactly seven
years later no spots are seen, although minimum phase should already be over. (Photos SOHO/MIDI)

the present are shown. Evidently the number of
spots varies with an average period of about
11 years. The actual period may be between 7
and 17 years. In the past decades, it has been
about 10.5 years. Usually the activity rises to its
maximum in about 3—4 years, and then falls off
slightly more slowly (Fig. 13.12). The period was
first noted by Samuel Heinrich Schwabe in 1843.

The variations in the number of sunspots have
been fairly regular since the beginning of the
18th century. However, in the 17th century there
were long intervals when there were essentially
no spots at all. This quiescent period is called the
Maunder minimum. The similar Sporer minimum
occurred in the 15th century, and other quiet in-
tervals have been inferred at earlier epochs. The
mechanism behind these irregular variations in
solar activity is not yet understood.

The magnetic fields in sunspots are measured
on the basis of the Zeeman effect, and may be
as large as 0.45 tesla. (The magnetic field of
the Earth at the equator is 0.03 mT.) The strong
magnetic field inhibits convective energy trans-
port, which explains the lower temperature of the
spots.

Sunspots often occur in pairs where the com-
ponents have opposite polarity. The structure of
such bipolar groups can be understood if the field
rises into a loop above the solar surface, connect-
ing the components of the pair. If gas is streaming
along such a loop, it becomes visible as a loop
prominence (Fig. 13.13).

The periodic variation in the number of sun-
spots reflects a variation in the general solar mag-
netic field. At the beginning of a new activity cy-
cle spots first begin to appear at latitudes of about
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Fig. 13.13 In pairs of
sunspots the magnetic field
lines form a loop outside
the solar surface. Material
streaming along the field
lines may form loop
prominences. Loops of
different size can be seen
in this image, which the
Trace satellite took in
1999. (Photo Trace)

Fig.13.14 At the

beginning of an activity
cycle, sunspots appear at
high latitudes. As the cycle
advances the spots move

towards the equator.
(Diagram by H. Virtanen,
based on Greenwich
Observatory observations)

Latitude

+40°. As the cycle advances, the spots move
closer to the equator. The characteristic pattern
in which spots appear, shown in Fig. 13.14, is
known as the butterfly diagram. Spots of the next
cycle begin to appear while those of the old one
are still present near the equator. Spots belonging
to the new cycle have a polarity opposite to that
of the old ones. (Spots in opposite hemispheres
also have opposite polarity.) Since the field is
thus reversed between consecutive 11 year cycles
the complete period of solar magnetic activity is
22 years.

The following general qualitative description
of the mechanism of the solar cycle was pro-
posed by Horace W. Babcock. Starting at a so-
lar minimum, the field will be of a generally
dipolar character. Because a conducting medium,
such as the outer layers of the Sun, cannot move
across the field lines, these will be frozen into the

plasma and carried along by it. Thus the differ-
ential rotation will draw the field into a tight spi-
ral (Fig. 13.15). In the process the field becomes
stronger, and this amplification will be a function
of latitude.

When the subsurface field becomes strong
enough, it gives rise to a “magnetic buoyancy”
that lifts ropes of magnetic flux above the sur-
face. This happens first at a latitude about 40°,
and later at lower latitudes. These protruding flux
ropes expand into loops forming bipolar groups
of spots. As the loops continue expanding they
make contact with the general dipolar field, which
still remains in the polar regions. This leads to
a rapid reconnection of the field lines neutralis-
ing the general field. The final result when ac-
tivity subsides is a dipolar field with a polarity
opposite the initial one.
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Fig. 13.15 Because the Sun rotates faster at the equator than at the poles, the field lines of the solar magnetic field are

drawn out into a tight spiral

Fig. 13.16 A quiet Sun in August 2006 around the
last sunspot minimum. Both pictures were taken by the
Michelson Doppler Imager on the SOHO satellite. On the

Thus the Babcock model accounts for the but-
terfly diagram, the formation of bipolar magnetic
regions and the general field reversal between ac-
tivity maxima. Nevertheless, it remains an essen-
tially phenomenological model, and alternative
scenarios have been proposed. In dynamo the-
ory quantitative models for the origin of mag-
netic fields in the Sun and other celestial bodies
are studied. In these models the field is produced
by convection and differential rotation of the gas.
A completely satisfactory dynamo model for the
solar magnetic cycle has not yet been found. For
example, it is not yet known whether the field is
produced everywhere in the convection zone, or
just in the boundary layer between the convective

2006/08/15 00:00

left the Sun in visible light, on the right a magnetogram,
which shows the opposite polarities of the magnetic fields
as black and white. (Photo SOHO/NASA/ESA)

and radiative regions, as some indications sug-
gest.

Other Activity The Sun shows several other
types of surface activity: faculae and plages;
prominences; flares.

The faculae and plages are local bright regions
in the photosphere and chromosphere, respec-
tively. Observations of the plages are made in the
hydrogen H,, or the calcium K lines (Fig. 13.16).
The plages usually occur where new sunspots
are forming, and disappear when the spots disap-
pear. Apparently they are caused by the enhanced
heating of the chromosphere in strong magnetic
fields.
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Fig. 13.17 (a) Quiescent “hedgerow” prominence. (Photograph Sacramento Peak Observatory.) (b) Larger eruptive
prominence. (Photograph Big Bear Solar Observatory)

The prominences are among the most spec-
tacular solar phenomena. They are glowing gas
masses in the corona, easily observed near the
edge of the Sun. There are several types of promi-
nences (Fig. 13.17): the quiescent prominences,
where the gas is slowly sinking along the mag-
netic field lines; loop prominences, connected
with magnetic field loops in sunspots; and the

rarer eruptive prominences, where gas is violently
thrown outwards.

The temperature of prominences is about
10,000-20,000 K. In H,, photographs of the chro-
mosphere, the prominences appear as dark fila-
ments against the solar surface (Fig. 13.6).

The flare outbursts are among the most violent
forms of solar activity (Fig. 13.18). They appear
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Fig. 13.18 A violent flare
near some small sunspots.
(Photograph Sacramento
Peak Observatory)

as bright flashes, lasting from one second to just
under an hour. In the flares a large amount of en-
ergy stored in the magnetic field is suddenly re-
leased. The detailed mechanism is not yet known.

Flares can be observed at all wavelengths. The
hard X-ray emission of the Sun may increase hun-
dredfold during a flare. Several different types
of flares are observed at radio wavelengths. The
emission of solar cosmic ray particles also rises.

Prominences and flares are often accompa-
nied with coronal mass ejections Fast moving
(500-2000 km/s) clouds cause shock waves ac-
celerating particles to very high velocities. Parti-
cles in flares are the fastest (v &~ 0.3¢). Particles in
a magnetic cloud travelling at the velocity of the
mass ejection reach the Earth in a couple of days.
Particles activated by the shock wave arrive con-
tinuously affecting the space weather and causing
magnetic storms.

The flares and coronal mass ejections give rise
to disturbances on the Earth. The X-rays cause
changes in the ionosphere, which affect short-
wave radio communications. The particles give
rise to strong auroras when they enter the Earth’s
magnetic field a few days after the outburst.

Solar Radio Emission The Sun is the strongest
radio source in the sky and has been observed

Fig. 13.19 An X-ray picture of the active Sun, taken by
the Japanese Yohkoh satellite in 1999, around the last
maximum of sunspot activity. (Photo JAXA)

since the 1940’s. In contrast to optical emis-
sion the radio picture of the Sun shows a strong
limb brightening. This is because the radio ra-
diation comes from the upper layers of the at-
mosphere. Since the propagation of radio waves
is obstructed by free electrons, the high electron
density near the surface prevents radio radiation
from getting out. Shorter wavelengths can propa-
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Fig. 13.20 The SOHO
(Solar and Heliospheric
Observatory) satellite
keeps a constant watch on
the Sun and its
surroundings in many
wavelengths. Here the
LASCO (Large Angle and
Spectrometric
Coronagraph) instrument
sees a large Coronal Mass
Ejection erupting from the
Sun. The surface of the
Sun is covered by a disk,
and the size and position of
the Sun is indicated by the
white circle. (Photo
SOHO/NASA/ESA)

1999/08/05 19:42

1999/08/05 23:18

gate more easily, and thus millimetre-wavelength
observations give a picture of deeper layers in the
atmosphere, whereas the long wavelengths show
the upper layers. (The 10 cm emission originates
in the upper layers of the chromosphere and the
1 m emission, in the corona.)

The Sun looks different at different wave-
lengths. At long wavelengths the radiation is
coming from the largest area, and its electron
temperature is about 10 K, since it originates
in the corona.

The radio emission of the Sun is constantly
changing according to solar activity. During large
storms the total emission may be 100,000 times
higher than normal. Especially the motion of
shock waves can be followed by the radio emis-
sion, since the electrons accelerated by the shock
generate radio emission (type Il radio bursts).

X-ray and UV Radiation The X-ray emis-
sion of the Sun is also related to active regions
(Fig. 13.19). Signs of activity are bright X-ray re-
gions and smaller X-ray bright points, which last
for around ten hours. The inner solar corona also

1999/08/0521:18

1999/08/06 00:42

emits X-rays. Near the solar poles there are coro-
nal holes, where the X-ray emission is weak.

Ultraviolet pictures of the solar surface show it
as much more irregular than it appears in visible
light. Most of the surface does not emit much UV
radiation, but there are large active regions that
are very bright in the ultraviolet.

Several satellites have made observations of
the Sun at UV and X-ray wavelengths, for ex-
ample Soho (Solar and Heliospheric Observa-
tory, 1995—, Fig. 13.20). These observations have
made possible detailed studies of the outer lay-
ers of the Sun. Observations of other stars have
revealed coronae, chromospheres and magnetic
variations similar to those in the Sun. Thus the
new observational techniques have brought the
physics of the Sun and the stars nearer to each
other.

13.4 Solar Wind and Space Weather

A continuous stream of charged particles is com-
ing from the Sun as the solar wind, varying
with the solar activity. The coronal mass ejec-
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tions are considered as “disturbances”. Around a
minimum mass ejections may occur a few times
a week; around a maximum there may be sev-
eral ejections every day. The solar wind consists
mainly of electrons and protons. At the distance
of the Earth there are typically 5-10 particles per
cubic centimetre. There are also some nuclei of
helium atoms. The velocity is the solar wind close
to the poles of the Sun is about 800 km/s but
around the equator only about 300 km/s. At the
distance of the Earth the velocity of the particles
is about 500 km/s on the average. The Sun loses
2 —3 x 10714 M, of its mass every year as solar
wind.

Magnetic fields of planets direct the motions
of the particles of the solar wind (Sect. 7.7). The
auroras are the most outstanding phenomenon on
the Earth. Currents induced by the charged parti-
cles can also have considerable negative effects.
They can damage satellites and even electric net-
works. The most serious accident this far hap-
pened in 1989 in Quebec when a high voltage net-
work was damaged and millions of people had to
survive without electricity for several hours.

Space weather mean the interaction of the so-
lar wind and the magnetic environment of the
Earth. Because of its effects it is now followed
actively. The space weather affects the upper at-
mosphere but it is still debated whether it is con-
nected to variations of the weather and climate.

13.5 Example

Example 13.1 Assume that the Sun converts
0.8 % of its mass into energy. Find an upper limit

for the age of the Sun, assuming that its luminos-
ity has remained constant.
The total amount of energy released is

E =mc? =0.008 Moc?
=0.008 x 2 x 10¥ kg x (3 x 10° ms™")?
=14 x 107 7.
The time needed to radiate this energy is

_E 14x107)
T Lo 39x1020W

=3.6x10"% s~ 10! years.

t

13.6 Exercises

Exercise 13.1 The solar constant, i.e. the flux
density of the solar radiation at the distance of
the Earth is 1370 Wm™2.

(a) Find the flux density on the surface of the
Sun, when the apparent diameter of the Sun
is 32'.

(b) How many square metres of solar surface is
needed to produce 1000 megawatts?

Exercise 13.2 Some theories have assumed that
the effective temperature of the Sun 4.5 billion
years ago was 5000 K and radius 1.02 times
the current radius. What was the solar constant
then? Assume that the orbit of the Earth has not
changed.
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Stars with changing magnitudes are called vari-
ables (Fig. 14.1). Variations in the brightness of
stars were first noted in Europe at the end of the
16th century, when Tycho Brahe’s supernova lit
up (1572) and the regular light variation of the
star o Ceti (Mira) was observed (1596). The num-
ber of known variables has grown steadily as ob-
servational precision has improved (Fig. 14.2).
The most recent catalogues contain about 40,000
stars known or suspected to be variable.

Strictly speaking, all stars are variable. As
was seen in Chap. 12, the structure and bright-
ness of a star change as it evolves. Although
these changes are usually slow, some evolution-
ary phases may be extremely rapid. In certain
evolutionary stages, there will also be periodic
variations, for example pulsations of the outer
layers of a star.

Small variations in stellar brightness are also
caused by hot and cool spots on a star’s surface,
appearing and disappearing as it rotates about its
axis. The luminosity of the Sun changes slightly
because of the sunspots. Probably there are simi-
lar spots on almost all stars.

Initially stellar brightnesses were determined
visually by comparing stars near each other. Later
on, comparisons were made on photographic
plates. At present the most accurate observations
are made photoelectrically or using a CCD cam-
era. The magnitude variation as a function of time
is called the lightcurve of a star (Fig. 14.3). From
it one obtains the amplitude of the magnitude
variation and its period, if the variation is peri-
odic.

© Springer-Verlag Berlin Heidelberg 2017

The basic reference catalogue of variable stars
is the General Catalogue of Variable Stars by the
Soviet astronomer Boris Vasilyevich Kukarkin.
New, supplemented editions appear at times; the
fourth edition published in 1985-1987, edited by
P.N. Kholopov, contains about 32,000 variables
of the Milky Way galaxy.

14.1 Classification

When a new variable is discovered, it is given
a name according to the constellation in which
it is located. The name of the first variable in
a given constellation is R, followed by the name
of the constellation (in the genitive case). The
symbol for the second variable is S, and so on,
to Z. After these, the two-letter symbols RR,
RS, ... to ZZ are used, and then AA to QZ (omit-
ting I). This is only enough for 334 variables,
a number that has long been exceeded in most
constellations. The numbering therefore contin-
ues: V335, V336, etc. (V stands for variable).
For some stars the established Greek letter sym-
bol has been kept, although they have later been
found to be variable (e.g. § Cephei).

The classification of variables is based on the
shape of the lightcurve, and on the spectral class
and observed radial motions. The spectrum may
also contain dark absorption lines from material
around the star. Observations can be made out-
side the optical region as well. Thus the radio
emission of some variables (e.g. flare stars) in-
creases strongly, simultaneously with their opti-
cal brightness. Examples of radio and X-ray vari-
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Fig. 14.1 The variables
are stars changing in
brightness. Two variables
in Scorpius, R and S Sco.
(Photograph Yerkes
Observatory)

Fig. 14.2 The location of
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types: pulsating, eruptive and eclipsing variables.
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Fig. 14.3 The variation of brightness, colour and size of
a cepheid during its pulsation

The eclipsing variables are binary systems in
which the components periodically pass in front
of each other. In these variables the light varia-
tions do not correspond to any physical change
in the stars. They have been treated in connection
with the binary stars. In the other variables the
brightness variations are intrinsic to the stars. In
the pulsating variables the variations are due to
the expansion and contraction of the outer lay-
ers. These variables are giants and supergiants
that have reached an unstable stage in their evolu-
tion. The eruptive variables are usually faint stars
ejecting mass. They are mostly members of close
binary systems in which mass is transferred from
one component to the other.

In addition a few rotating variables are known,
where the brightness variations are due to an
uneven temperature distribution on the surface,
starspots coming into sight when the star rotates.
Such stars may be quite common—after all, our
Sun is a weak rotating variable. The most promi-
nent group of rotating variables are the magnetic
A stars (e.g. the o> Canum Venaticorum stars).
These stars have strong magnetic fields that may
be giving rise to starspots. The periods of rotating

Table 14.1 The main properties of pulsating variables
(N, number of stars of the given type in Kukarkin’s cat-
alogue, P, pulsation period in days, Am, pulsation ampli-
tude in magnitudes)

Variable N P Spectrum | Am
Classical cepheids | 800 ' 1-135 F-K1 <2
(6 Cep, W Vir)

RR Lyrae 6100 <1 A-F8 <2
Dwarf cepheids 200 1 0.05-7 | A-F <1
(8 Scuti)

B Cephei 90 0.1-0.6 B1-B31I =>0.3
Mira variables 5800 | 80-1000  M-C >2.5
RV Tauri 120 1 30-150 |G-M <4
Semiregular 3400 | 30-1000 | K-C <4.5
Irregular 2300 | — K-M <2

variables range from about 1 day to 25 d, and the
amplitudes are less than 0.1 mag.

14.2 Pulsating Variables

The wavelengths of the spectral lines of the pul-
sating variables change along with the brightness
variations (Table 14.1). These changes are due to
the Doppler effect, showing that the outer layers
of the star are indeed pulsating. The observed gas
velocities are in the range of 40-200 km/s.

The period of pulsation corresponds to a pro-
per frequency of the star. Just like a tuning fork
vibrates with a characteristic frequency when hit,
a star has a fundamental frequency of vibration.
In addition to the fundamental frequency other
frequencies, “overtones”, are possible. The ob-
served brightness variation can be understood
as a superposition of all these modes of vibra-
tion. Around 1920, the English astrophysicist Sir
Arthur Eddington showed that the period of pul-
sation P is inversely proportional to the square
root of the mean density,

1
Pox—.
JP

The diameter of the star may double during the
pulsation, but usually the changes in size are mi-
nor. The main cause of the light variation is the
periodic variation of the surface temperature. We
have seen in Sect. 5.7 that the luminosity of a star

(14.1)
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depends sensitively on its effective temperature,
L x Te4. Thus a small change in effective temper-
ature leads to a large brightness variation.

Normally a star is in stable hydrostatic equi-
librium. If its outer layers expand, the density and
temperature decrease. The pressure then becomes
smaller and the force of gravity compresses the
gas again. However, unless energy can be trans-
ferred to the gas motions, these oscillations will
be damped.

The flux of radiative energy from the stellar
interior could provide a source of energy for the
stellar oscillations, if it were preferentially ab-
sorbed in regions of higher gas density. Usually
this is not the case but in the ionisation zones,
where hydrogen and helium are partially ionised,
the opacity in fact becomes larger when the gas is
compressed. If the ionisation zones are at a suit-
able depth in the atmosphere, the energy absorbed
during compression and released during expan-
sion of an ionisation zone can drive an oscillation.
Stars with surface temperatures of 6000-9000 K
are liable to this instability. The corresponding
section of the HR diagram is called the cepheid
instability strip.

Cepheids Among the most important pulsating
variables are the cepheids, named after § Cephei
(Fig. 14.3). They are population I supergiants
(stellar populations are discussed in Sect. 18.2)
of spectral class F-K. Their periods are 1-50
days and their amplitudes, 0.1-2.5 magnitudes.
The shape of the light curve is regular, showing
a fairly rapid brightening, followed by a slower
fall off. There is a relationship between the period
of a cepheid and its absolute magnitude (i.e. lu-
minosity), discovered in 1912 by Henrietta Leav-
it from cepheids in the Small Magellanic Cloud.
This period—luminosity relation (Fig. 14.4) can
be used to measure distances of stars and nearby
galaxies.

We have already noted that the pulsation pe-
riod is related to the mean density. On the other
hand the size of a star, and hence its mean density,
is related to its total luminosity. Thus one can un-
derstand why there should be a relation between
the period and the luminosity of a pulsating star.

Absolute visual magnitude

0 0.5 1.0 1.5 1gP[d]

Fig. 14.4 The period—luminosity relation for cepheids.
The black points and squares are theoretically calculated
values, the crosses and the straight line represent the ob-
served relation. (Drawing from Novotny, E. (1973): Intro-
duction to Stellar Atmospheres and Interiors (Oxford Uni-
versity Press, New York) p. 359)

The magnitudes M and periods P of classical
cepheids are shown in Fig. 14.4. The relation be-
tween M and log P is linear. However, to some
extent, the cepheid luminosities also depend on
colour: bluer stars are brighter. For accurate dis-
tance determinations, this effect needs to be taken
into consideration.

W Virginis Stars In 1952 Walter Baade noted
that there are in fact two types of cepheids: the
classical cepheids and the W Virginis stars. Both
types obey a period-luminosity relation, but the
W Vir stars of a given period are 1.5 magnitudes
fainter than the corresponding classical cepheids.
This difference is due to the fact that the classical
cepheids are young population I objects, whereas
the W Vir stars are old stars of population II.
Otherwise, the two classes of variables are sim-
ilar.

Earlier, the W Vir period—luminosity relation
had been used for both types of cepheids. Con-
sequently the calculated distances to classical
cepheids were too small. For example, the dis-
tance to the Andromeda Galaxy had been based
on classical cepheids, since only these were
bright enough to be visible at that distance. When
the correct period—luminosity relation was used,
all extragalactic distances had to be doubled. Dis-
tances within the Milky Way did not have to be
changed, since their measurements were based on
other methods.
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Fig. 14.5 The lightcurve of a long period Mira variable

RR Lyrae Stars The third important class of
pulsating variables are the RR Lyrae stars. Their
brightness variations are smaller than those of the
cepheids, usually less than a magnitude. Their pe-
riods are also shorter, less than a day. Like the
W Vir stars, the RR Lyrae stars are old popula-
tion II stars. They are very common in the glob-
ular star clusters and were therefore previously
called cluster variables.

The absolute magnitudes of the RR Lyrae stars
are about My = 0.6£0.3. They are all of roughly
the same age and mass, and thus represent the
same evolutionary phase, where helium is just be-
ginning to burn in the core. Since the absolute
magnitudes of the RR Lyrae variables are known,
they can be used to determine distances to the
globular clusters.

Mira Variables (See Fig. 14.5.) The Mira vari-
ables (named after Mira Ceti) are supergiants of
spectral classes M, S or C, usually with emis-
sion lines in their spectrum. They are losing gas
in a steady stellar wind. Their periods are nor-
mally 100-500 days, and for this reason, they
are also sometimes called long period variables.
The amplitude of the light variations is typically
about 6 magnitudes in the visual region. The pe-
riod of Mira itself is about 330 days and its di-
ameter is about 2 au. At its brightest, Mira has
the magnitude 2—4, but at light minimum, it may
be down to 12. The effective temperature of the
Mira variables is only about 2000 K. Thus 95 %
of their radiation is in the infrared, which means
that a very small change in temperature can cause
a very large change in visual brightness.

Other Pulsating Variables One additional lar-
ge group of pulsating stars are the semiregular

and irregular variables. They are supergiants, of-
ten very massive young stars with unsteady pul-
sations in their extended outer layers. If there
is some periodicity in the pulsations, these vari-
ables are called semiregular; otherwise they are
irregular. An example of a semiregular variable
is Betelgeuse (« Orionis). The pulsation mecha-
nism of these stars is not well understood, since
their outer layers are convective, and the theory
of stellar convection is still poorly developed.

In addition to the main types of pulsating vari-
ables, there are some smaller separate classes,
shown in Fig. 14.2.

The dwarf cepheid and the § Scuti stars, which
are sometimes counted as a separate type, are lo-
cated below the RR Lyrae stars in the cepheid
instability strip in the HR diagram. The dwarf
cepheids are fainter and more rapidly varying
than the classical cepheids. Their light curves of-
ten show a beating due to interference between
the fundamental frequency and the first overtone.

The B Cephei stars are located in a different
part of the HR diagram than the other variables.
They are hot massive stars, radiating mainly in
the ultraviolet. The variations are rapid and of
small amplitude. The pulsation mechanism of the
B Cephei stars is unknown.

The RV Tauri stars lie between the cepheids
and the Mira variables in the HR diagram. Their
period depends slightly on the luminosity. There
are some unexplained features in the light curves
of the RV Tauri stars, e.g. the minima are alter-
nately deep and shallow.

14.3 Eruptive Variables

In the eruptive variables there are no regular
pulsations. Instead sudden outbursts occur in
which material is ejected into space. Nowadays
such stars are divided into two main categories,
eruptive and cataclysmic variables. Brightness
changes of eruptive variables are caused by sud-
den eruptions in the chromosphere or corona, the
contributions of which are, however, rather small
in the stellar scale. These stars are usually sur-
rounded by a gas shell or interstellar matter par-
ticipating in the eruption. This group includes e.g.
flare stars, various kinds of nebular variables,
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Table 14.2 Main properties of eruptive variables (N,
number of stars of the given type in Kukarkin’s catalogue,
Am, change in brightness in magnitudes. The velocity is
the expansion velocity in km/s, based on the Doppler shifts
of the spectral lines)

Variable N Am | Velocity
Supernovae 7 220 | 4000-10,000
Ordinary novae 210 7-18 | 200-3500
Recurrent novae <10 | 600
Nova-like stars 80 <2 30-100
(P Cygni, symbiotic)

Dwarf novae 330 2-6 (700)

(SS Cyg = U Gem,

77 Cam)

R Coronae Borealis 40 19 -
Irregular 1450 <4 (300)
(nebular variables,

T Tau, RW Aur)

Flare stars 750 | <6 2000

(UV Ceti)

and R Coronae Borealis stars. Eruptions of the
cataclysmic variables are due to nuclear reactions
on the stellar surface or interior. Explosions are so
violent that they can even destroy the whole star.
This group includes novae and nova-like stars,
dwarf novae and supernovae (Table 14.2).

Flare Stars The flare or UV Ceti stars are
dwarf stars of spectral class M. They are young
stars, mostly found in young star clusters and as-
sociations. At irregular intervals there are flare
outbursts on the surface of the stars similar to
those on the Sun. The flares are related to dis-
turbances in the surface magnetic fields. The en-
ergy of the outbursts of the flare stars is appar-
ently about the same as in solar flares, but because
the stars are much fainter than the Sun, a flare
can cause a brightening by up to 4-5 magnitudes.
A flare lights up in a few seconds and then fades
away in a few minutes (Fig. 14.6). The same star
may flare several times in one day. The optical
flare is accompanied by a radio outburst, like in
the Sun. In fact, the flare stars were the first stars
to be detected as radio sources.

Nebular Variables In connection with bright
and dark interstellar clouds e.g. in the constel-
lations of Orion, Taurus and Auriga, there are
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Fig. 14.6 The outbursts of typical flare stars are of short
duration
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Fig. 14.7 Light curve of a T Tauri variable

variable stars. The T Tauri stars are the most in-
teresting of them. These stars are newly formed
or just contracting towards the main sequence.
The brightness variations of the T Tauri stars
are irregular (Fig. 14.7). Their spectra contain
bright emission lines, formed in the stellar chro-
mosphere, and forbidden lines, which can only be
formed at extremely low densities. The spectral
lines also show that matter is streaming out from
the stars.

Since the T Tauri stars are situated inside
dense gas clouds, they are difficult to observe.
However, this situation has improved with the de-
velopment of radio and infrared techniques.

Stars in the process of formation may change
in brightness very rapidly. For example, in 1937,
FU Orionis brightened by 6 magnitudes. This star
is a strong source of infrared radiation, which
shows that it is still enveloped by large quantities
of interstellar dust and gas. A similar brighten-
ing by six magnitudes was observed in 1969 in
V1057 Cygni (Fig. 14.8). Before its brightening,
it was an irregular T Tauri variable; since then,
it has remained a fairly constant tenth-magnitude
AB star.
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Stars of the R Coronae Borealis type have “in-
verse nova” light curves. Their brightness may
drop by almost ten magnitudes and stay low for
years, before the star brightens to its normal lu-
minosity. For example, R CrB itself is of magni-
tude 5.8, but may fade to 14.8 magnitudes. Fig-
ure 14.9 shows its recent decline, based on ob-
servations by Finnish and French amateurs. The
R CrB stars are rich in carbon and the decline is
produced when the carbon condenses into a cir-
cumstellar dust shell.

One very interesting variable is n Carinae
(Fig. 14.10). At present it is a six magnitude
star surrounded by a thick, extensive envelope of
dust and gas. In the early 19th century n Carinae
was the second brightest star in the sky after Sir-
ius. Around the middle of the century it rapidly
dimmed to magnitude 8, but during the 20th cen-
tury it has brightened somewhat. n Carinae is a
so called bright blue variable. Its mass is esti-
mated to be of the order of 100 solar masses. The
circumstellar dust cloud is the brightest infrared
source in the sky outside the solar system. The en-

16 -

1 1 1 1 1 1 1 1 1
1970 1972 1974 1976

1968

Fig. 14.8 In 1969-1970, the star V1057 Cygni bright-
ened by almost 6 magnitudes

Fig. 14.9 The decline of

ergy radiated by 1 Carinae is absorbed by the neb-
ula and re-radiated at infrared wavelengths. The
exact reason for the enormous brightness varia-
tions is not known. It is believed that the stability
of the star is disturbed by the radiation pressure
of the huge energy produced by a very massive
star. When the nucleus will collapse at the end of
the lifespan of the star, n Carinae will explode as
a supernova.

Novae One of the best known types of erup-
tive variables are the novae. They are classified
into several subtypes: ordinary novae, recurrent
novae and nova-like variables. The dwarf novae
(Fig. 14.11) are nova-like rather frequently erup-
tive stars; although the lightcurves are similar to
those of novae, the mechanism is different.

The outbursts of all novae are rapid. Within
a day or two the brightness rises to a maximum,
which may be 7-16 magnitudes brighter than the
normal luminosity. This is followed by a gradual
decline, which may go on for months or years.
The light curve of a typical nova is shown in
Fig. 14.13. This light curve of Nova Cygni 1975
has been composed from hundreds of observa-
tions, mostly by amateurs.

In recurrent novae, the brightening is some-
what less than 10 magnitudes and in dwarf novae,
2—-6 magnitudes. In both types there are repeated
outbursts. For recurrent novae the time between
outbursts is a few decades and for the dwarf no-
vae 20-600 days. The interval depends on the
strength of the outburst: the stronger the outburst,
the longer the time until the next one. The bright-

m
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Fig. 14.10 In the 19th
century, n Carinae was one
of the brightest stars in the
sky; since then it has
dimmed considerably. In
an outburst in 1843 the star
ejected an expanding
nebula, which has been
called “Homunculus”. The
Hubble photograph has
been printed negative, to
show finer details in the
bipolar outflow.
(Photograph
NASA/HST/University of
Minnesota)

Fig. 14.11 The light
curve of the dwarf nova SS
Cygni in the beginning of
1966. (Drawing by Martti
Periléd is based on
observations by Nordic
amateurs)

ening in magnitudes is roughly proportional to
the logarithm of the recharging interval. It is pos-
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sible that ordinary novae obey the same relation-
ship. However, their amplitude is so much larger



143 Eruptive Variables

307

Fig. 14.12 The novae are
thought to be white dwarfs
accreting matter from

a nearby companion star.
At times, nuclear reactions
burning the accreted
hydrogen are ignited, and
this is seen as the flare-up
of a nova

Nova
outbursts

that the time between outbursts should be thou-
sands or millions of years.

Observations have shown all novae and dwarf
novae to be members of close binary systems.
One component of the system is a normal star and
the other is a white dwarf surrounded by a gas
ring. (The evolution of close binary systems was
considered in Sect. 12.6, where it was seen how
this kind of system might have been formed.)
The normal star fills its Roche surface, and ma-
terial from it streams over to the white dwarf.
When enough mass has collected on the surface
of the white dwarf, the hydrogen is explosively
ignited and the outer shell is ejected. The bright-
ness of the star grows rapidly. As the ejected
shell expands, the temperature of the star drops
and the luminosity gradually decreases. How-
ever, the outburst does not stop the mass transfer
from the companion star, and gradually the white
dwarf accretes new material for the next explo-
sion (Fig. 14.12).

The emission and absorption lines from the ex-
panding gas shell can be observed in the spec-
trum of a nova. The Doppler shifts correspond
to an expansion velocity of about 1000 km/s. As
the gas shell disperses, its spectrum becomes that
of a typical diffuse emission nebula. The expand-
ing shell around a nova can also sometimes be
directly seen in photographs.

In dwarf novae the energy does not come from
nuclear reactions but mainly from the potential
energy of the matter falling into the white dwarf.
An eruption occurs when the density of the accre-

Mass flow

Normal star

tion disk formed by the matter flowing from the
companion star exceeds a certain critical limit,
becomes unstable and is strongly heated.

A considerable fraction of the novae in our
Galaxy are hidden by interstellar clouds and their
number is therefore difficult to estimate. In the
Andromeda Galaxy, observations indicate 25—
30 nova explosions per year. The number of
dwarf novae is much larger. In addition there
are nova-like variables, which share many of the
properties of novae, such as emission lines from
circumstellar gas and rapid brightness variations.
These variables, some of which are called symbi-
otic stars, are close binaries with mass transfer.
Gas streaming from the primary hits a gas disk
around the secondary in a hot spot, but there are
no nova outbursts.

The supersoft stars (SSS) are a somewhat pe-
culiar subclass of cataclysmic variables. Their X-
ray radiation is much stronger and much softer,
i.e. has longer wavelength, than that of the ordi-
nary cataclysmic variables. In the SSS objects the
component losing mass is more massive than the
compact star (white dwarf), in contrast with or-
dinary interacting binaries. Therefore the mass
transfer is an unstable self sustained process
transferring more material to the surface of the
white dwarf than in the normal cataclysmic vari-
ables. On the surface of the white dwarf a contin-
uous fusion reaction resembling nova eruptions
is producing a lot of soft X-ray radiation. Due to
their unstable character the SSS objects are short
lived and therefore relatively rare.
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Fig. 14.13 1In 1975 a new
variable, Nova Cygni or
V1500 Cygni, was
discovered in Cygnus. In
the upper photograph the
nova is at its brightest
(about 2 magnitudes), and
in the lower photograph it
has faded to magnitude 15.
(Photographs Lick .
Observatory)

%

Apparent visual magnitude
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14.4 Supernovae

Explosions of stars as supernovae are among
the most energetic phenomena of the universe.
Within a couple of weeks the star becomes so
bright that its luminosity corresponds to over a
billion Suns or a whole small galaxy. Thus they
can be observed even at cosmological distances,
and they are useful standard candles for measur-

September

ing the dimensions of the universe and cosmo-
logical quantities. Supernovae are also important
sources of heavy elements. Most elements heav-
ier than iron have originated in supernova explo-
sions.

The maximum is followed by a slow decay,
and the nearest supernovae can be observed still
years after the explosion. In the explosion a gas
shell expanding with a velocity of thousands of
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kilometres per second is ejected. Over 200 of
such supernova remnants have been discovered in
the Milky Way. Their ages vary from a few hun-
dred to tens of thousands of years.

At least six supernova explosions have been
observed in the Milky Way. Best known are the
“guest star” seen in China in 1054 (whose rem-
nant is the Crab nebula), Tycho Brahe’s super-
nova in 1572 and Kepler’s supernova in 1604. On
the basis of observations of other Sb—Sc-type spi-
ral galaxies, the interval between supernova ex-
plosions in the Milky Way is predicted to be about
50 years. Some will be hidden by obscuring ma-
terial, especially near the centre of the galaxy. In
particularly dusty starburst galaxies almost all su-
pernovae remain undetected due to the extinction
of the dust. Still the 400 years’ interval since the
last observed supernova in the Milky Way is un-
usually long.

Supernovae in other galaxies are detected
quite frequently. For example, both in 2006 and
2007 over 500 new supernovae were found. In
the near future the number will increase rapidly
thanks to new all sky surveys.

Earlier supernovae were divided just to two
main categories, I and II, based on whether their
spectra showed evidence of hydrogen. Later these
main classes have been divided into several sub-

icon absorption line (615 nm), which is strong
in the spectra of young novae. It is thought that
these supernovae originate in binaries, at least a
billion years old, consisting of a white dwarf and
its companion. In such a close binary material can
flow from the companion to the white dwarf un-
til it mass exceeds the limit (about 1.4M¢). Then
the pressure of the degenerate of the electron gas
inside the white dwarf cannot overcome the grav-
itation and star will collapse. Increase of the den-
sity and temperature will ignite an explosive fu-
sion reaction that can destroy the white dwarf.
The kinetic energy released in the process is of
the order of 10** J causing part of the gas to ex-
pand even at a velocity of 0.1c. The origin of the
radiation energy (around 10*? J) is the fission of
the radioactive nickel isotope 56 created in the
explosion (typically about 0.5M) into radioac-
tive cobalt and further into stable iron. The more
nickel is produced in the explosion the brighter
the supernova shines at its maximum; the abso-
lute magnitude will reach —19——20. The shape
of the lightcurve depends on the brightness of the
supernova: the brighter the supernova the broader
the top of the lightcurve. Therefore the maximum
brightness of a typer Ia supernova can be de-
termined precisely from its lightcurve. This way
they can be used as standard candles to determine
dimensions of the universe and cosmological pa-
rameters (Chap. 20).

In Chap. 12 we discussed the final stages of
stellar evolution and how the collapse of a mas-
sive star will lead to an explosion. It is believed
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Fig. 14.16 Spectra of
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that all supernovae except type Ia are caused by
the collapse of massive and short lived stars. At
the end of its lifespan such a star has an iron
core that will collapse under its own gravity after
exceeding the Chandrasekhar limit. In the stellar
core the matter will reach the density of atomic
nuclei and the outer layers bounce back send-
ing an outbound shock wave. The process cre-
ates a huge number of neutrinos. Since they in-
teract only weakly with the outer layers of the
star they rush to the surrounding space. The re-
maining core may become a neutron star or, in
the case of a very massive star, a black hole. Most
of the released energy (about 99 %) escapes with
the neutrinos. The outer layers of the star receive
a kinetic energy of about 10** J, part of which
may be released as radiation when the expanding
matter hits the material surrounding the star and
later the interstellar matter. Typically the super-
nova itself emits radiation about 10*? J within a
few months after the explosion, reaching an ab-
solute magnitude between —16 and —20 at the
maximum. Later the brightness is sustained by
the fission of the radioactive nickel 56, born in the
explosion, to other elements just as in the case of
the type la supernovae.

If the spectrum of a supernova does not con-
tain strong hydrogen or silicon lines its type is

! |
4000 6000 8000 6000 8000

wavelength (&)

4000

either Ib or Ic. The type Ib supernovae are recog-
nised by strong helium lines that are not present
in the spectra of type Ic. These supernovae orig-
inate in stars that don’t have any more hydrogen
in their outer layer. The stars exploding as type Ic
supernovae have also lost their outer layer of he-
lium. Such stars that have lost their outer layers
are called Wolf—Rayet stars.

All type II supernovae have hydrogen lines in
their spectra. They are divided into main types
II-P and II-L based on the flat (plateau) and lin-
ear shape of the lightcurve. Recently several stars
that later exploded as supernovae have been iden-
tified in high resolution pictures taken e.g. by the
Hubble space telescope and the VLT telescope
before the explosion (Fig. 14.17). These obser-
vations have shown that the more common type
II-P supernovae originate in red supergiant stars
as predicted by theories of stellar evolution. Ini-
tially the masses of such stars have been at least 8
solar masses. Smaller stars are not believed to ex-
plode in a collapse. They end up as white dwarfs
after more quiescent evolution.

Type IIn supernovae are recognised by their
hydrogen emission lines that are much narrower
than in the spectra of other supernovae. The lines
originate in the matter around the star. The spec-
tra of young type IIn supernovae have hydrogen
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lines, which, however, disappear in a few weeks,
and afterwards the spectrum resembles the type
Ib spectra. It is assumed that these supernovae
were originally massive stars that still had a small
amount of hydrogen in their outer layer before the
explosion. Thus they are intermedia between the
types II and Ib. The observed properties and types
of supernovae depend on the properties of their
progenitors, and hence individual supernovae can
of intermediate types. Hence it makes more sense

to classify supernovae according to the explosion
mechanism simply to two different types, ther-
monuclear and core collapse supernovae. About
30 % of the supernovae found in nearby galaxies
are thermonuclear and the remaining 70 % core
collapse supernovae.

On February 23, 1987 the first burst of light
from a supernova in the Large Magellanic Cloud,
the small companion galaxy of the Milky Way,
reached the Earth (Fig. 14.18). This supernova,

Fig. 14.17 Leﬁ: The 220 T T T T T T u-v-_: T T T T
supernova 2003gd of type 215E ; ACS F555W . . T WFPC2 FE06W |
IITP after the exp1051.0n. s E Ty £
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before the explosion. The US E — e
exploded red supergiant 15:44:20.0 - o l I A (progenitor) ilj
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the image taken before the
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explosion. Both images E ’ 21 -
were taken with the Hubble 2 - ' )
space telescope. (Smartt et 18.0 B E ‘ ]
al., 2004, Science, A . ; : i i e g ; ; 1 ) . e
vol. 303, 5657, 499) o o o 0 & )
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Fig. 14.18 Supernova 1987A in the Large Magellanic Cloud before and after the explosion. (Photographs ESO)
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SN 1987A, was of type II, and was the bright-
est supernova for 383 years. After its first detec-
tion, SN 1987A was studied in great detail by all
available means. Although the general ideas of
Sects. 11.4 and 11.5 on the final stages of stellar
evolution have been confirmed, there are compli-
cations. Thus e.g. the progenitor star was a blue
rather than a red giant as expected, perhaps be-
cause of the lower abundance of heavy elements
in the Large Magellanic Cloud compared to that
in the Milky Way. The collapse of its core re-
leased a vast amount of energy as a pulse of neu-
trinos, which was detected in Japan and the USA.
The amount of energy released indicates that the
remnant is a neutron star.

14.5 Examples

Example 14.1 The observed period of a cepheid
is 20 days and its mean apparent magnitude m =
20. From Fig. 14.4, its absolute magnitude is
M =~ —5. According to (4.12), the distance of the
cepheid is

r=10x 10" =M/5 = 10 x 1020+3/5

=10° pc =1 Mpc.

Example 14.2 The brightness of a cepheid
varies 2 mag. If the effective temperature is
6000 K at the maximum and 5000 K at the mini-
mum, how much does the radius change?

The luminosity varies between

4
o Tmax ?

Limax =47 R?

max
Lin =47 R>. o T4

min min*

In magnitudes the difference is

Lui 4T R2. o T2
Am=—25lg "% = —2.5]g ——min_mn
max 4” Rmaxa Tmax
Rumi T
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max Tmax
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R T
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14.6 Exercises

Exercise 14.1 The absolute visual magnitude of
RR Lyrae variables is 0.6 & 0.3. What is the rela-
tive error of distances due to the deviation in the
magnitude?

Exercise 14.2 The bolometric magnitude of
a long period variable varies by one magnitude.
The effective temperature at the maximum is
4500 K.

(a) What is the temperature at the minimum, if
the variation is due to temperature change
only?

(b) If the temperature remains constant, what is
the relative variation in the radius?

Exercise 14.3 In 1983 the radius of the Crab
nebula was about 3'. It is expanding 0.21” a year.
Radial velocities of 1300 kms~! with respect to
the central star have been observed in the nebula.

(a) What is the distance of the nebula, assuming
its expansion is symmetric?

(b) A supernova explosion has been observed in
the direction of the nebula. Estimate, how
long time ago?

(c) What was the apparent magnitude of the su-
pernova, if the absolute magnitude was a typ-
ical —18?



Compact Stars

In astrophysics those stars in which the density
of matter is much larger than in ordinary stars are
known as compact objects. These include white
dwarfs, neutron stars, and black holes. In addi-
tion to a very high density, the compact objects
are characterised by the fact that nuclear reactions
have completely ceased in their interiors. Conse-
quently they cannot support themselves against
gravity by thermal gas pressure. In the white
dwarfs and neutron stars, gravity is resisted by the
pressure of a degenerate gas. In the black holes
the force of gravity is completely dominant and
compresses the stellar material to infinite density.

Compact stars in binary systems give rise to a
variety of striking new phenomena. If the com-
panion star is losing mass by a stellar wind or
a Roche lobe overflow, the gas that is shed may
be accreted by the compact object. This will re-
lease gravitational energy that can be observable
in the form of X-ray emission and strong and
rapid brightness variations.

15.1 White Dwarfs

As was mentioned in Sect. 11.2, in ordinary stars
the pressure of the gas obeys the equation of state
of an ideal gas. In stellar interiors the gas is fully
ionised, i.e. it is plasma consisting of ions and
free electrons. The partial pressures of the ions
and electrons together with the radiation pressure
important in hot stars comprise the total pres-
sure balancing gravitation. When the star runs
out of its nuclear fuel, the density in the interior
increases, but the temperature does not change
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much. The electrons become degenerate, and the
pressure is mainly due to the pressure of the de-
generate electron gas, the pressure due to the ions
and radiation being negligible. The star becomes
a white dwarf.

As will be explained in Box 15.1 the radius of
a degenerate star is inversely proportional to the
cubic root of the mass. Unlike in a normal star the
radius decreases as the mass increases.

The first white dwarf to be discovered was Sir-
ius B, the companion of Sirius (Fig. 15.1). Its ex-
ceptional nature was realised in 1915, when it
was discovered that its effective temperature was
very high. Since it is faint, this meant that its ra-
dius had to be very small, slightly smaller than
that of the Earth. The mass of Sirius B was known
to be about equal to that of the Sun, so its density
had to be extremely large.

The high density of Sirius B was confirmed in
1925, when the gravitational redshift of its spec-
tral lines was measured. This measurement also
provided early observational support to Einstein’s
general theory of relativity.

White dwarfs occur both as single stars and
in binary systems. Their spectral lines are broad-
ened by the strong gravitational field at the sur-
face. In some white dwarfs the spectral lines are
further broadened by rapid rotation. Strong mag-
netic fields have also been observed.

White dwarfs have no internal sources of en-
ergy, but further gravitational contraction is pre-
vented by the pressure of the degenerate electron
gas. Radiating away the remaining heat, white
dwarfs will slowly cool, changing in colour from
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Fig. 15.1 Two views of the best-known white dwarf Sir-
ius B, the small companion to Sirius. On the left, a picture
in visible light by the Hubble Space Telescope. Sirius B
is the tiny white dot on lower left from the overexposed
image of Sirius. On the right, an X-ray picture of the pair

white to red and finally to black. The cooling time
is comparable to the age of the Universe, and even
the oldest white dwarfs should still be observable.
Looking for the faintest white dwarfs has been
used as a way to set a lower limit on the age of
the Universe.

Cataclysmic Variables When a white dwarf is
a member of a close binary system, it can ac-
crete mass from its companion star. The most in-
teresting case is where a main sequence star is
filling its Roche lobe, the largest volume it can
have without spilling over to the white dwarf. As
the secondary evolves, it expands and begins to
lose mass, which is eventually accreted by the
primary. Binary stars of this kind are known as
cataclysmic variables.

The present definition of the class of cata-
clysmic variables has gradually evolved, and in
consequence many types of systems that were
earlier viewed as separate are now collected un-
der this heading. In principle, even type Ia super-
novae should be included. The classical novae,
whose eruptions are caused by the sudden igni-
tion of hydrogen that has collected on the sur-
face of the white dwarf, have been described in
Sect. 14.3. In the eruptions most of the accreted

taken by the Chandra X-ray observatory. Sirius B is now
the brighter source, and Sirius is weaker, because its sur-
face is much cooler than the surface of the white dwarf.
(Photos NASA / HST and Chandra)

gas is expelled in a shell, but if the mass transfer
continues in the system further eruptions may oc-
cur, giving rise to recurrent novae. Finally, cata-
clysmic variables without eruptions, for example
pre-novae or post-novae, are classified as nova-
like variables.

The dwarf novae, also described in Sect. 14.3,
are produced by a quite different mechanism. In
their case the outbursts are not caused by ther-
monuclear reactions, but by instabilities in the
accretion flow around the white dwarf. Although
the details of the outburst mechanism are still not
completely clear, the basic picture is that the disk
has two possible states, a hot and a cool one,
available. Under some conditions the disk cannot
remain permanently in either of these states, and
has to jump repeatedly between the hot outburst
state and the cool quiescent state.

A special type of nova-like variables are the
magnetic cataclysmic variables. In the polars the
magnetic field is so strong that the accreted gas
cannot settle into an accretion disk. Instead it is
forced to follow the magnetic field lines, form-
ing an accretion column. As the gas hits the sur-
face of the white dwarf it is strongly heated giving
rise to bright X-ray emission, which is a charac-
teristic feature of polars. Systems with a slightly
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Fig. 15.2 The structure of

a neutron star. The crust is

rigid solid material and the

mantle a freely streaming
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matter

Neutrons as
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weaker magnetic field are called intermediate po-
lars. These systems exhibit both X-ray emission
and variations due to an accretion disk.

15.2 Neutron Stars

If the mass of a star is large enough, the density of
matter may grow even larger than in normal white
dwarfs. The equation of state of a classical degen-
erate electron gas then has to be replaced with the
corresponding relativistic formula. In this case
decreasing the radius of the star no longer helps
in resisting the gravitational attraction. Equilib-
rium is possible only for one particular value of
the mass, the Chandrasekhar mass Mcy, already
introduced in Sect. 12.5. The value of Mcy is
about 1.4 M, which is thus the upper limit to the
mass of a white dwarf. If the mass of the star is
larger than Mcy, gravity overwhelms the pressure
and the star will rapidly contract towards higher
densities. The final stable state reached after this
collapse will be a neutron star (Fig. 15.2). On the
other hand, if the mass is smaller than Mcy, the
pressure dominates. The star will then expand un-
til the density is small enough to allow an equilib-
rium state with a less relativistic equation of state.

When a massive star reaches the end of its evo-
lution and explodes as a supernova, the simulta-
neous collapse of its core will not necessarily stop
at the density of a white dwarf. If the mass of the
collapsing core is larger than the Chandrasekhar
mass (2 1.4 M), the collapse continues to a neu-
tron star.

An important particle reaction during the fi-
nal stages of stellar evolution is the URCA pro-
cess, which was put forward by Schonberg and
Gamow in the 1940’s and which produces a large

Mantle Crust

neutrino emission without otherwise affecting the
composition of matter. (The URCA process was
invented in Rio de Janeiro and named after a local
casino. Apparently money disappeared at URCA
just as energy disappeared from stellar interiors in
the form of neutrinos. It is claimed that the casino
was closed by the authorities when this similarity
became known.) The URCA process consists of
the reactions

(Z,A)+e" = (Z—-1,A) 4+ v,
Z-1,A)—(Z,A)+e + v,

where Z is the number of protons in a nucleus;
A the mass number; e~ an electron; and v, and
Ve the electron neutrino and antineutrino. When
the electron gas is degenerate, the latter reaction
is suppressed by the Pauli exclusion principle. In
consequence the protons in the nuclei are trans-
formed into neutrons. As the number of neutrons
in the nuclei grows, their binding energies de-
crease. At densities of about 4 x 10'* kg/m? the
neutrons begin to leak out of the nucleus, and at
10'7 kg/m? the nuclei disappear altogether. Mat-
ter then consists of a neutron “porridge”, mixed
with about 0.5 % electrons and protons.

Neutron stars are supported against gravity by
the pressure of the degenerate neutron gas, just
as white dwarfs are supported by electron pres-
sure. The equation of state is the same, except
that the electron mass is replaced by the neu-
tron mass, and that the mean molecular weight is
defined with respect to the number of free neu-
trons. Since the gas consists almost entirely of
neutrons, the mean molecular weight is approx-
imately one.

The typical diameters of neutron stars are
about 10 km. Unlike ordinary stars they have
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Fig. 15.3 A rotating neutron star is surrounded by a
strong magnetic field which drags electrons from the sur-
face and accelerates them to relativistic speeds over the
magnetic poles. When the electrons are accelerated along
the magnetic field lines, they radiate so called curvature
radiation in a narrow beam. Since the magnetic axis is mis-
aligned with the rotation axis, the beams sweep around the
sky like in a lighthouse. (Lorimer—Kramer 2005, Hand-
book of Pulsar Astronomy, Cambridge University Press,
p. 55)

a well-defined solid surface. The atmosphere
above it is a few centimetres thick. The upper
crust is a metallic solid with the density grow-
ing rapidly inwards. Most of the star is a neutron
superfluid, and in the centre, where the density
exceeds 10'® kg/m?3, there may be a solid nu-
cleus of heavier particles (hyperons), or of quark
matter, where the quarks that normally constitute
neutrons have become unconfined.

A neutron star formed in the explosion and
collapse of a supernova will initially rotate ra-
pidly, because its angular momentum is un-
changed while its radius is much smaller than
before. In a few hours the star will settle in
a flattened equilibrium, rotating several hundred
times per second. The initial magnetic field of the
neutron star will also be compressed in the col-
lapse, so that there will be a strong field coupling
the star to the surrounding material. The angu-
lar momentum of the neutron star is steadily de-
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Fig. 15.4 Consecutive radio pulses at 408 MHz from
two pulsars. To the left PSR 1642-03 and to the right
PSR 1133+416. Observations made at Jodrell Bank. (Pic-
ture from Smith, F.G. (1977): Pulsars (Cambridge Univer-
sity Press, Cambridge) pp. 93, 95)

creased by the emission of electromagnetic radia-
tion, neutrinos, cosmic ray particles and possibly
gravitational radiation. Thus the angular veloc-
ity decreases. The rotation can also break the star
into several separate objects. They will eventu-
ally recombine when the energy of the system is
reduced. In some cases the stars can remain sep-
arated, resulting e.g. in a binary neutron star.

The theory of neutron stars was developed in
the 1930’s, but the first observations were not
made until the 1960’s. At that time the pulsars,
a new type of rapidly pulsating radio sources,
were discovered and identified as neutron stars.
In the 1970’s neutron stars were also seen as X-
ray pulsars, X-ray bursters and magnetars.

Pulsars The pulsars were discovered in 1967,
when Anthony Hewish and Jocelyn Bell in Cam-
bridge, England, detected sharp, regular radio
pulses coming from the sky. Since then about
1500 pulsars have been discovered (Fig. 15.4).
Their periods range from 0.0016 s (for the pul-
sar 1937 4 214) up to 20 minutes.

In addition to the steady slowing down of the
rotation, sometimes small sudden jumps in the
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Fig.15.5 A time-
sequence of the pulsation
of the Crab pulsar in visible
light. The pictures were
taken once about every
millisecond; the period of
the pulsar is about 33
milliseconds. (Photos N.A.
Sharp/NOAO/AURA/NSF)

period are observed. These might be a sign of
rapid mass movements in the neutron star crust
(“starquakes”) or in its surroundings.

The origin of the radio pulses can be under-
stood if the magnetic field is tilted at an angle
of 45°-90° with respect to the rotation axis. The
field is so strong that it drags electrons from the
surface and accelerates them to relativistic speeds
over the magnetic poles. When the electrons are
accelerated along the magnetic field lines, they
radiate so called curvature radiation which is re-
lated to synchrotron radiation (Fig. 15.3). In the
direction of the magnetic poles two thin beams
of radio radiation are emitted. The beams sweep
around the sky, and if the Earth happens to be in
the path of the beam a pulsar is seen.

The best-known pulsar is located in the Crab
nebula (Figs. 15.5 and 15.7). This small neb-
ula in the constellation Taurus was noted by the
French astronomer Charles Messier in the middle
of the 18th century and became the first object in
the Messier catalogue, M 1. The Crab nebula was
found to be a strong radio source in 1948 and an
X-ray source in 1964. The pulsar was discovered
in 1968. In the following year it was observed op-
tically and was also found to be an X-ray emitter.

Neutron stars are difficult to study optically,
since their luminosity in the visible region is very

small (typically about 10~ L). For instance the
Vela pulsar has been observed at a visual magni-
tude of about 25. In the radio region, it is a very
strong pulsating source.

A few pulsars have been discovered in binary
systems; the first one, PSR 1913416, in 1974.
In 1993 Joseph Taylor and Russell Hulse were
awarded the Nobel prize for the detection and
studies of this pulsar. The pulsar orbits about
a companion, presumably another neutron star,
with the orbital eccentricity 0.6 and the period
8 hours. The observed period of the pulses is al-
tered by the Doppler effect, and this allows one to
determine the velocity curve of the pulsar. These
observations can be made very accurately, and it
has therefore been possible to follow the changes
in the orbital elements of the system over a pe-
riod of several years. For example, the periastron
direction of the binary pulsar has been found to
rotate about 4° per year. This phenomenon can
be explained by means of the general theory of
relativity; in the solar system, the corresponding
rotation (the minor fraction of the rotation not
explained by the Newtonian mechanics) of the
perihelion of Mercury is 43 arc seconds per cen-
tury.

The binary pulsar PSR 19134-16 has also pro-
vided the first strong evidence for the existence of
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gravitational waves. During the time of observa-
tion the orbital period of the system has steadily
decreased. This shows that the system is losing
orbital energy at a rate that agrees exactly with
that predicted by the general theory of relativity.
The lost energy is radiated as gravitational waves.

Magnetars The energy emitted by common
pulsars has its origin in the slowing down of their
rotation. In some neutron stars, the magnetars,
the magnetic field is so strong that the energy re-
leased in the decay of the field is the main source
of energy. Whereas in ordinary pulsars the mag-
netic field is typically 10° T, in magnetars a typi-
cal value may be 10°-10'! T,

Magnetars were first invoked as an explana-
tion of the soft gamma repeaters (SGR), X-ray
stars that irregularly emit bright, short (0.1 s) re-
peating flashes of low-energy gamma rays. Later
a second class of mysterious objects, the anoma-
lous X-ray pulsars (AXP), were identified as
magnetars. AXP are slowly rotating pulsars, with
a rotation period of 6 to 12 seconds. Despite this
they are bright X-ray sources, which can be un-
derstood if their energy is of magnetic origin.

It is thought that magnetars are the remnants
of stars that were more massive and rapidly ro-
tating than those giving rise to ordinary pulsars,
although the details are still subject to debate.
A magnetar first appears as a SGR. During this
phase, which only lasts about 10,000 years, the
very strong magnetic field is slowing down the
rate of rotation. At the same time the field is
drifting with respect to the neutron star crust.
This causes shifts in the crust structure, leading
to powerful magnetic flares and the observed out-
bursts. After about 10,000 years the rotation has
slowed down so much that the outbursts cease,
leaving the neutron star observable as an AXP.

Gamma Ray Bursts For a long time the gam-
ma ray bursts (GRB), very short and sharp
gamma ray pulses first discovered in 1973, re-
mained a mystery. Unlike the much less common
SGR, the GRB never recurred, and they had no
optical or X-ray counterparts. A first major ad-
vance was made when satellite observations with
the Compton Gamma Ray Observatory showed
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Fig. 15.6 The location of the peculiar type Ibc supernova
SN 1998bw at redshift z = 0.0085 is in the circle to the
lower left. This was also the position of the faint gam-
ma-ray burst GRB 980425, the first GRB to be connected
with a supernova. The circle on the upper right marks an
ultraluminous X-ray source. (C. Kouveliotou et al. 2004,
ApJ 608, 872, Fig. 1)

that the gamma ray bursts are almost uniformly
distributed in the sky, unlike the known neutron
stars.

The nature of the gamma ray bursts is now
becoming clear thanks to dedicated observing
programmes that have used burst detections by
gamma and X-ray satellites such as Beppo-SAX
and, in particular, Swift rapidly to look for after-
glows of the GRB at optical wavelengths. The de-
tection of these afterglows has made it possible to
determine distances to the bursts and their loca-
tion in their host galaxies (see Fig. 15.6).

It has become clear that there are at least two
kinds of bursts, with the self-descriptive names
long soft bursts, and short hard bursts. The long
soft gamma ray bursts, lasting longer than 2 sec-
onds, have now been convincingly shown to be
produced in the explosions of massive stars at the
end of their life, specifically supernovae of types
Ib and Ic (Sect. 14.3). Only a small fraction of
all type Ibc supernovae give rise to a GRB. The
explosions that produce GRB have been called
hypernovae, and are among the brightest objects
in the Universe. A gamma ray burst observed in
late 2005 took place when the Universe was only
900 million years old, making it one of the most
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Fig. 15.7 Some pulsars shine brightly in gamma-rays. In
the center the Crab pulsar and on the upper left the gamma
source Geminga, which was identified in 1992 to be the
nearest pulsar with a distance of about 100 pc from the
Sun. (Photo by Compton Gamma Ray Observatory)

distant objects ever observed. The conditions re-
quired for hypernova explosions are still not cer-
tain.

The nature of the systems giving rise to short
gamma ray bursts, lasting less than 2 seconds,
have been more difficult to ascertain. The most
popular theory has been that they are produced in
compact binary systems consisting of two neu-
tron stars or a neutron star and a black hole.
These systems lose energy by gravitational radi-
ation, and eventually the two components should
merge, producing a burst of gamma radiation.
This theory has now received strong support
when the afterglow of a few short bursts has been
detected in the outer parts of their host galaxies.
Since the stars in these regions are all old and
no longer give rise to core-collapse supernovae,
the neutron star merger hypothesis appears most
likely. However, it is still also possible that some
of the short bursts are exceptionally bright mag-
netar flares.

Box 15.1 (The Radius of White Dwarfs and
Neutron Stars) The mass of a white dwarf or
a neutron star determines its radius. This fol-
lows from the equation of hydrostatic equilib-
rium and from the pressure-density relation for

a degenerate gas. Using the hydrostatic equilib-
rium equation (11.1)

dP GM,p

dr r2

one can estimate the average pressure P:

dpP

P MxM/R® M?
dr

X = —.
R R? R>

Here we have used p o« M/R>. Thus the pres-
sure obeys

P o M?/R*. (1)

In the nonrelativistic case, the pressure of a de-
generate electron gas is given by (11.16):

P~ (hz/me) (MemH)_5/3p5/3

and hence
0>/3

Mefle

By combining (1) and (2) we obtain
M2 M5/3
F > Rsmeﬂg/3

or

XX —————F7 X M_1/3.
M Pmep"

Thus the smaller the radius of a white dwarf is,
the larger its mass will be. If the density be-
comes so large that the relativistic equation of
state (11.17) has to be used, the expression for
the pressure is

As the star contracts, the pressure grows at the
same rate as demanded by the condition for hy-
drostatic support (1). Once contraction has be-
gun, it can only stop when the state of mat-
ter changes: the electrons and protons com-
bine into neutrons. Only a star that is massive
enough can give rise to a relativistic degenerate
pressure.

The neutrons are fermions, just like the elec-
trons. They obey the Pauli exclusion principle,
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and the degenerate neutron gas pressure is ob-
tained from an expression analogous to (2):

p5/3

5/3°
Mnn

P, x

where m;, is the neutron mass and u,, the
molecular weight per free neutron. Corre-
spondingly, the radius of a neutron star is given
by

Ry o

M gl

If a white dwarf consists purely of helium,
e = 2; for a neutron star, uy, ~ 1. If a white
dwarf and a neutron star have the same mass,
the ratio of their radii is

Rud 3 (Mns >1/3<&)5/3ﬂ
Rns Myq Me Mme

1\5/3
~1x (§> x 1840 ~ 600.

Thus the radius of a neutron star is about 1/600
of that of a white dwarf. Typically Ry is about
10 km.

15.3 BlackHoles

If the mass of a star exceeds Mgy (Sect. 12.5),
and if it does not lose mass during its evolu-
tion it can no longer reach any stable final state.
The force of gravity will dominate over all other
forces, and the star will collapse to a black hole.
A black hole is black because not even light can
escape from it. Already at the end of the 18th
century Laplace showed that a sufficiently mas-
sive body would prevent the escape of light from
its surface. According to classical mechanics, the
escape velocity from a body of radius R and

mass M is
12GM
Vo=, —.
R

This is greater than the speed of light, if the radius
is smaller than the critical radius

Rs =2GM/c>. (15.1)

Axis of rotation

it

oS

Fig. 15.8 A black hole is surrounded by a spherical event
horizon. In addition to this a rotating black hole is sur-
rounded by a flattened surface inside which no matter can
remain stationary. This region is called the ergosphere

The same value for the critical radius, the Schwa-
rzschild radius, is obtained from the general the-
ory of relativity. For example, for the Sun, Rg
is about 3 km; however, the Sun’s mass is so
small that it cannot become a black hole by nor-
mal stellar evolution. Because the mass of a black
hole formed by stellar collapse has to be larger
than Moy the radius of the smallest black holes
formed in this way is about 5-10 km.

The properties of black holes have to be stud-
ied on the basis of the general theory of relativity,
which is beyond the scope of this book. Thus only
some basic properties are discussed qualitatively.

An event horizon is a surface through which
no information can be sent out, even in principle.
A black hole is surrounded by an event horizon at
the Schwarzschild radius (Fig. 15.8). In the the-
ory of relativity each observer carries with him
his own local measure of time. If two observers
are at rest with respect to each other at the same
point their clocks go at the same rate. Otherwise
their clock rates are different, and the apparent
course of events differs, too.

Near the event horizon the different time def-
initions become significant. An observer falling
into a black hole reaches the centre in a finite
time, according to his own clock, and does not
notice anything special as he passes through the
event horizon. However, to a distant observer he
never seems to reach the event horizon; his ve-
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locity of fall seems to decrease towards zero as
he approaches the horizon.

The slowing down of time also appears as
a decrease in the frequency of light signals. The
formula for the gravitational redshift can be writ-
ten in terms of the Schwarzschild radius as (Ap-

pendix B)
R
v\/l -5,
r

2GM
Voo = v\/ 1— 7 =
rc
Here, v is the frequency of radiation emitted at
a distance r from the black hole and v, the fre-
quency observed by an infinitely distant observer.
It can be seen that the frequency at infinity ap-
proaches zero for radiation emitted near the event
horizon.

Since the gravitational force is directed to-
wards the centre of the hole and depends on the
distance, different parts of a falling body feel
a gravitational pull that is different in magnitude
and direction. The tidal forces become extremely
large near a black hole so that any material falling
into the hole will be torn apart. All atoms and el-
ementary particles are destroyed near the central
point, and the final state of matter is unknown to
present-day physics. The observable properties of
a black hole do not depend on how it was made.

Not only all information on the material com-
position disappears as a star collapses into a black
hole; any magnetic field, for example, also disap-
pears behind the event horizon. A black hole can
only have three observable properties: mass, an-
gular momentum and electric charge.

It is improbable that a black hole could have
a significant net charge. An electrically charged
black hole would attract particles with opposite
charge until it became neutral. Rotation, on the
other hand, is typical to stars, and thus black
holes, too, must rotate. Since the angular momen-
tum is conserved, stars collapsed to black holes
must rotate very fast.

In 1963 Roy Kerr managed to find a solution
of the field equations for a rotating black hole. In
addition to the event horizon a rotating hole has
another limiting surface, an ellipsoidal static limit
(Fig. 15.8). Objects inside the static limit cannot
be kept stationary by any force, but they must
orbit the hole. However, it is possible to escape

(15.2)

from the region between the static limit and the
event horizon, called the ergosphere. In fact it is
possible to utilise the rotational energy of a black
hole by dropping an object to the ergosphere in
such a way that part of the object falls into the
hole and another part is slung out. The outcom-
ing part may then have considerably more kinetic
energy than the original object.

At present the only known way in which
a black hole could be directly observed is by
means of the radiation from gas falling into it.
For example, if a black hole is part of a binary
system, gas streaming from the companion will
settle into a disk around the hole. Matter at the
inner edge of the disk will fall into the hole. The
accreting gas will lose a considerable part of its
energy (up to 40 % of the rest mass) as radiation,
which should be observable in the X-ray region.

Some rapidly and irregularly varying X-ray
sources of the right kind have been discovered.
The first strong evidence for black hole in an
X-ray binary was for Cygnus X-1 (Fig. 15.9). Its
luminosity varies on the time scale of 0.001 s,
which means that the emitting region must be
only 0.001 light-seconds or a few hundred kilo-
metres in size. Only neutron stars and black holes
are small and dense enough to give rise to such
high-energy processes. Cygnus X-1 is the smaller
component of the double system HDE 226868.
The larger component is an optically visible su-
pergiant with a mass 20-25 M. The mass of
the unseen component has been calculated to be
10-15 Mg . If this is correct, the mass of the sec-
ondary component is much larger than the up-
per limit for a neutron star, and thus it has to be
a black hole.

Today 20 such systems are known, where the
compact component has a mass larger than 3 M,
and therefore is probably a black hole. As shown
in Fig. 15.10 these can be of very different sizes.
Nearly all of them have been discovered as X-ray
novae.

Many frightening stories about black holes
have been invented. It should therefore be stressed
that they obey the same dynamical laws as other
stars—they are not lurking in the darkness of
space to attack innocent passers-by. If the Sun
became a black hole, the planets would continue
in their orbits as if nothing had happened.
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Fig. 15.9 The arrow shows the variable star V1357 Cyg.
Its companion is the X-ray source Cygnus X-1, suspected
to be a black hole. Cyg X-1 itself is so faint that it can be
observed by its X-ray radiation only. The bright star to the
lower right of V1357 is n Cygni, one of the brightest stars
in the constellation Cygnus

So far we have discussed only black holes with
masses in the range of stellar masses. There is
however no upper limit to the mass of a black
hole. Many active phenomena in the nuclei of
galaxies can be explained with supermassive
black holes with masses of millions or thousands
of millions solar masses (see Sect. 19.7).

15.4 X-ray Binaries

Close binaries where a neutron star or a black
hole is accreting matter from its companion, usu-
ally a main sequence star, will be visible as
strong X-ray sources. They are generally classi-
fied as high-mass X-ray binaries (HMXB), when
the companion has a mass larger than about
10 Mg, and low-mass X-ray binaries (LMXB)
with a companion mass smaller than 1.2 M.
In HMXBs the source of the accreted material

is a strong stellar wind. LMXBs are produced
by Roche-lobe overflow of the companion star,
either because the major axis of the binary de-
creases due to angular momentum loss from the
system, or else because the radius of the compan-
ion is increasing as it evolves.

Because of the rapid evolution of the massive
component in HMXBs these systems are young
and short-lived, 10°-107 a. In LMXBs the life-
time is determined by the mass-transfer process,
and may be longer, 10’-10'° a. In many respects
they are similar to cataclysmic variables, and may
give rise to analogous phenomena.

Many kinds of variable X-ray sources have
been discovered since they were first observed in
the 1970’s. Among these, the X-ray pulsars and
the X-ray bursters can only be neutron stars. In
other types of X-ray binaries it can be difficult to
determine whether the primary is a neutron star
or a black hole.

Neutron stars and black holes are formed in
supernova explosions, and in a binary system the
explosion would normally be expected to disrupt
the binary. An X-ray binary will only form under
special conditions. Some examples are shown in
Sect. 12.6.

X-ray Pulsars X-ray pulsars always belong to
binary systems and may be either HMXBs or
LMXBs. The pulse periods of X-ray pulsars in
high-mass systems are significantly longer than
those of radio pulsars, from a few seconds to tens
of minutes. In contrast to radio pulsars, the period
of the pulsed emission of these pulsars decreases
with time.

The characteristic properties of X-ray pul-
sars can be understood from their binary nature.
A neutron star formed in a binary system is first
seen as a normal radio pulsar. Initially, the strong
radiation of the pulsar prevents gas from falling
onto it. However, as it slows down, its energy de-
creases, and eventually the stellar wind from the
companion can reach its surface. The incoming
gas is channelled to the magnetic polar caps of
the neutron star, where it emits strong X-ray ra-
diation as it hits the surface. This produces the
observed pulsed emission.

In low-mass systems, the angular momentum
of the incoming gas speeds up the rotation of
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Fig. 15.10 Scale drawings
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the pulsar. The maximum possible rotation rate
of a neutron star before centrifugal forces start to
break it up corresponds to a period of about a mil-
lisecond. A few millisecond pulsars with periods
of this order are known, both in the radio and in
the X-ray region. It is thought that these are (or,
in the radio case, have once been) members of bi-
nary systems.

The emission curve of a typical fast X-ray pul-
sar, Hercules X1, is shown in Fig. 15.11. The pe-
riod of the pulses is 1.24 s. This neutron star is
part of an eclipsing binary system, known from
optical observations as HZ Herculis. The orbital
properties of the system can therefore be deter-
mined. Thus e.g. the mass of the pulsar is about
one solar mass, reasonable for a neutron star.

X-ray Bursters X-ray bursters are irregular
variables, showing sudden brightenings, known
as type I X-ray bursts, at random times
(Fig. 15.12). The typical interval between out-
bursts is a few hours or days, but more rapid
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GS 2023+328

bursters are also known. The strength of the out-
burst seems to be related to the recharging time.

Type I X-ray bursts are analogous to the erup-
tions of classical novae. However, the source of
radiation in X-ray bursters cannot be the igni-
tion of hydrogen, since the maximum emission
is in the X-ray region. Instead, gas from the com-
panion settles on the surface of the neutron star,
where hydrogen burns steadily to helium. Then,
when the growing shell of helium reaches a criti-
cal temperature, it burns to carbon in a rapid he-
lium flash. Since, in this case, there are no thick
damping outer layers, the flash appears as a burst
of X-ray radiation.

X-ray Novae The X-ray pulsars and bursters
have to be neutron stars. Other X-ray binaries
may be either neutron stars or black holes. All
compact X-ray sources are variable to some ex-
tent. In the persistent sources the variations are
moderate, an the sources always visible. The ma-
jority of sources are transient.
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Fig. 15.12 The variations

of the rapid X-ray burster
MXB 1730-335. An
100 second interval is

marked in the diagram.
(Lewin, W.H.G. (1977):
Ann. N.Y. Acad. Sci. 302,
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If the X-ray bursters correspond to classical
novae, the counterparts of dwarf novae are the
X-ray novae, also known as soft X-ray transients
(SXT). Quantitatively there are large differences
between these types of systems. Dwarf novae
have outbursts lasting for a few days at intervals
of a few months, for SXTs the outbursts hap-
pen at decade-long intervals and last for months.
A dwarf nova brightens by a factor about 100 dur-
ing outbursts, a SXT by a factor of 10°. The light-
curves of neutron-star and black-hole SXTs are
compared in Fig. 15.13.

The SXTs are alternating between (at least)
two states: During the high state thermal radia-
tion from the accretion disk dominates, whereas
in the low state the X-ray have a higher energy,
and are produced by Compton scattering by hot
electrons in a disk corona or a jet.

Microquasars One interesting aspect of X-ray
binaries is their connection to models of active
galactic nuclei (AGN, Sect. 19.7). In both sys-
tems a black hole, which in the case of AGN may
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have a mass in the range 10°~10'° M, is sur-
rounded by an accretion disk.

In an X-ray binary there is similarly an accre-
tion disk surrounding a compact object, a stellar-
mass black hole. It will exhibit phenomena in
many respects similar to those in AGN. Since
the galactic sources are much nearer, and vary on
much shorter time-scales, they may allow more
detailed observations of these phenomena.

80 T
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Fig.15.13 Light-curves of a neutron-star (Aql X-1) and a
black-hole (GRO J1655—40) transient source, as observed
by the All Sky Monitor on RXTE. (D. Psaltis 2006, in
Compact Stellar X-ray Sources, ed. Lewin, vdKlis, CUP,
p- 16, Fig. 1.9)

Fig. 15.14 Observed
outburst of the microquasar
GRS 1915+105 on

For example, relativistic jets perpendicular to
the disk are common in AGN, and they can also
be expected in X-ray binaries. A few examples
of such microquasars have been discovered, see
Fig. 15.14.

Furthermore, in AGN the jet may sometimes
be pointing straight at us. Relativistic effects will
then lead to a brightening of the source. In a mi-
croquasar there might be a similar effect, which
would provide one explanation for the ultralu-
minous X-ray sources (ULX), sources which ap-
pear to be too luminous to be produced by or-
dinary stellar-mass black holes. This is impor-
tant, because according to an alternative model
ULXs contain an intermediate mass black hole
with a mass about 103 M. The origin of such in-
termediate mass black holes, if they exist, is an
intriguing problem.

15.5 Examples

Example 15.1 Assume that the Sun collapses
into a neutron star with a radius of 20 km.
(a) What will be the mean density of the neutron
star? (b) What would be it rotation period?
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(a) The mean density is

Mo  2x10%kg
7R3 37(20 % 10%)3 m3

IO =
~ 6 x 10'° kg/m?.

One cubic millimetre of this substance would
weigh 60 million kilos.

(b) To obtain an exact value, we should take
into account the mass distributions of the Sun and
the resulting neutron star. Very rough estimates
can be found assuming that both are homoge-
neous. Then the moment of inertia is I = %M R2,
and the angular momentum is L = /w. The rota-
tion period is then obtained as in Example 12.1:

R2
P:PQR—O

s 20 x 103 m
6.96 x 108 m

~ 0.0018 s.

2
) =2.064 x 1078 d

The Sun would make over 550 revolutions per
second.

Example 15.2 What should be the radius of the
Sun if the escape velocity from the surface were
to exceed the speed of light?

The escape velocity exceeds the speed of light
if

2GM
— >
R
or
2GM
R = Rs.

For the Sun we have

Re— 2x6.67x107 1 m3s72kg~1x1.989x 1030 kg
5= (2.998x 108 ms—1)2

=2950 m.

15.6 Exercises

Exercise 15.1 The mass of a pulsar is 1.5 Mg,
radius 10 km, and rotation period 0.033 s. What
is the angular momentum of the pulsar? Varia-
tions of 0.0003 s are observed in the period. If
they are due to radial oscillations (“starquakes™),
how large are these oscillations?

Exercise 15.2 In Dragon’s Egg by Robert L.
Forward a spaceship orbits a neutron star at a dis-
tance of 406 km from the centre of the star. The
orbital period is the same as the rotation period of
the star, 0.1993 s.

(a) Find the mass of the star and the gravitational
acceleration felt by the spaceship.

(b) What is the effect of the gravitation on
a 175 cm tall astronaut, if (s)he stands with
her/his feet pointing towards the star? And if
(s)he is lying tangential to the orbit?

Exercise 15.3 A photon leaves the surface of
a star at a frequency ve. An infinitely distant ob-
server finds that its frequency is v. If the differ-
ence is due to gravitation only, the change in the
energy of the photon, 2Av, equals the change in
its potential energy. Find the relation between v
and v, assuming the mass and radius of the star
are M and R. How much will the solar radiation
redshift on its way to the Earth?



The Interstellar Medium

Although most of the mass of the Milky Way
Galaxy is condensed into stars, interstellar space
is not completely empty. It contains gas and dust
in the form both of individual clouds and of a dif-
fuse medium. Interstellar space typically contains
about one gas atom per cubic centimetre and
100 dust particles per cubic kilometre.

Altogether, about 10 % of the mass of the
Milky Way consists of interstellar gas. Since the
gas is strongly concentrated in the galactic plane
and the spiral arms, in these regions there are
many places where the quantities of stars and in-
terstellar matter are about equal. The dust (a bet-
ter name would be “smoke”, since the particle
sizes are much smaller than in terrestrial dust)
constitutes about one percent of the gas. High-
energy cosmic ray particles are mixed with the
gas and dust. There is also a weak, but still very
important, galactic magnetic field.

At present the most important observations of
the interstellar medium are made at radio and in-
frared wavelengths, since the peak of the emis-
sion often lies at these wavelengths. But many
forms of interstellar matter (such as solid bod-
ies with diameters larger than 1 mm) would be
almost impossible to detect on the basis of their
emission or absorption. In principle, the mass of
these forms of matter might be larger than the ob-
served mass of all other forms put together. How-
ever, an upper limit on the total mass of interstel-
lar matter, regardless of its form, can be derived
on the basis of its gravitational effects. This is
the Oort limit. The galactic gravitational field is
determined by the distribution of matter. By ob-

© Springer-Verlag Berlin Heidelberg 2017

serving the motions of stars perpendicular to the
galactic plane, the vertical gravitational force and
hence the amount of mass in the galactic plane
can be determined. The result is that the local
density within 1 kpc of the Sun is (7.3-10.0) x
1072! kgm™3. The density of known stars is
(5.9-6.7) x 1072 kgm~3 and that of known in-
terstellar matter about 1.7 x 10~2! kgm™3. Thus
there is very little room for unknown forms of
mass in the solar neighbourhood. However, the
limit concerns only the dark matter concentrated
in the galactic plane. There are indications that
the Milky Way is surrounded by a spherical halo
of dark matter (Chap. 18).

16.1 Interstellar Dust

The first clear evidence for the existence of in-
terstellar dust was obtained around 1930. Before
that, it had been generally thought that space is
completely transparent and that light can propa-
gate indefinitely without extinction.

In 1930 Robert Trumpler published his study
of the space distribution of the open clusters.
The absolute magnitudes M of the brightest stars
could be estimated on the basis of the spectral
type. Thus the distance r to the clusters could
be calculated from the observed apparent magni-
tudes m of the bright stars:

r

m—M=5lg (16.1)

10 pc’

Trumpler also studied the diameters of the clus-
ters. The linear diameter D is obtained from the
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apparent angular diameter d by means of the for-
mula

D =dr, (16.2)

where r is the distance of the cluster.

It caught Trumpler’s attention that the more
distant clusters appeared to be systematically
larger than the nearer ones (Fig. 16.1). Since this
could hardly be true, the distances of the more
distant clusters must have been overestimated.
Trumpler concluded that space is not completely
transparent, but that the light of a star is dimmed
by some intervening material. To take this into
account, (16.1) has to be replaced with (4.17)

m—M=5lg—— + A, (16.3)
10 pc
where A > 0 is the extinction in magnitudes due
to the intervening medium. If the opacity of the
medium is assumed to be the same at all distances
and in all directions, A can be written

A :a}"’ (164)

where a is a constant. Trumpler obtained for the
average value of a in the galactic plane, ape =
0.79 mag/kpc, in photographic magnitudes. At
present, a value of 2 mag/kpc is used for the av-
erage extinction. Thus the extinction over a 5 kpc
path is already 10 magnitudes.

Extinction due to dust varies strongly with
direction. For example, visible light from the
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Fig. 16.1 The diameters of open star clusters calculated
with the distance given by the formula (15.1) according
to Trumpler (1930). The increase of the diameter with dis-
tance is not a real phenomenon, but an effect of interstellar
extinction, which was discovered in this way

galactic centre (distance 8-9 kpc) is dimmed by
30 magnitudes. Therefore the galactic centre can-
not be observed at optical wavelengths.

Extinction is due to dust grains that have diam-
eters near the wavelength of the light. Such par-
ticles scatter light extremely efficiently. Gas can
also cause extinction by scattering, but its scatter-
ing efficiency per unit mass is much smaller. The
total amount of gas allowed by the Oort limit is so
small that scattering by gas is negligible in inter-
stellar space. (This is in contrast with the Earth’s
atmosphere, where air molecules make a signifi-
cant contribution to the total extinction).

Interstellar particles can cause extinction in
two ways:

1. In absorption the radiant energy is trans-
formed into heat, which is then re-radiated
at infrared wavelengths corresponding to the
temperature of the dust particles.

2. In scattering the direction of light propagation
is changed, leading to a reduced intensity in
the original direction of propagation.

An expression for interstellar extinction will
now be derived. The size, index of refraction and
number density of the particles are assumed to
be known. For simplicity we shall assume that all
particles are spheres with the same radius a and
the geometrical cross section wa?. The true ex-
tinction cross section of the particles Cex; Will be

Cext = Qextﬂaz, (16.5)

where Qey; is the extinction efficiency factor.
Let us consider a volume element with length
d/ and cross section dA, normal to the direction
of propagation (Fig. 16.2). It is assumed that the
particles inside the element do not shadow each
other. If the particle density is n, there are n d/ dA
particles in the volume element and they will
cover the fraction dr of the area dA, where

ndAdl Cex
T=—

dA =n Cext dl.

In the length d/ the intensity is thus changed by
dl =—Idr. (16.6)

On the basis of (16.6) dt can be identified as the
optical depth.
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Fig. 16.2 Extinction by a distribution of particles. In the
volume element with length d/ and cross section dA, there
are n dA dl particles, where n is the particle density in the
medium. If the extinction cross section of one particle is

The total optical depth between the star and
the Earth is

r r
T(r) :/ dr :/ N Cext Al = Cexqnir,
0 0

where 7 is the average particle density along the
given path. According to (4.18) the extinction in
magnitudes is

A= (2.5l1ge)r,
and hence

A(r) = (2.51ge)Cexerir (16.7)

This formula can also be inverted to calculate 7,
if the other quantities are known.

The extinction efficiency factor Qex; can be
calculated exactly for spherical particles with
given radius a and refractive index m. In general,

Qext = Qabs + Qscaa

where

Qabs = absorption efficiency factor,

Qsca = scattering efficiency factor.

If we define
x=2ma/x, (16.8)

where A is the wavelength of the radiation, then

ext = Qext(x, m). (16.9)

Cext, the total area covered by the particles is n dA dI Cey;.
Thus the fractional decrease in intensity over the distance
dlisdl/I = —ndAdl Cex/dA = —n Cexe dl

©O —~— N W A O~ N W AL

5 10 15 20 25 x=2ma/A

Fig. 16.3 Mie scattering: the extinction efficiency factor
for spherical particles for the refractive indices m = 1.5
and m = 1.33 (refractive index of water). The horizon-
tal axis is related to the size of the particle according to
x =2ma/X\, where a is the particle radius and A, the wave-
length of the radiation

The exact expression for Qex; iS a series ex-
pansion in x that converges more slowly for
larger values of x. When x « 1, the process is
called Rayleigh scattering; otherwise it is known
as Mie scattering. Figure 16.3 shows Qex; as
a function of x for m = 1.5 and m = 1.33. For
very large particles, (x > 1) Qex¢ = 2, as appears
from Fig. 16.3. Purely geometrically one would
have expected Qext = 1; the two times larger scat-
tering efficiency is due to the diffraction of light
at the edges of the particle.

Other observable phenomena, apart from ex-
tinction, are also caused by interstellar dust. One
of these is the reddening of the light of stars.
(This should not be confused with the redshift
of spectral lines.) Reddening is due to the fact
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Fig. 16.4 (a) Schematic representation of the interstel-
lar extinction. As the wavelength increases, the extinc-
tion approaches zero. (Drawing based on Greenberg, J.M.
(1968): “Interstellar Grains”, in Nebulae and Interstel-
lar Matter, ed. by Middlehurst, B.M., Aller, L.H., Stars

that the amount of extinction becomes larger for
shorter wavelengths. Going from red to ultravi-
olet, the extinction is roughly inversely propor-
tional to wavelength. For this reason the light of
distant stars is redder than would be expected on
the basis of their spectral class. The spectral class
is defined on the basis of the relative strengths of
the spectral lines which are not affected by ex-
tinction.

According to (4.20), the observed colour index
B — V of a star is

B—V =Mg— My + Ag — A

=(B—V)o+ Ep-v, (16.10)
where (B — V) is the intrinsic colour of the star
and E_vy the colour excess. As noted in Sect. 4.5
the ratio between the visual extinction Ay and the
colour excess is approximately constant:

Av Ay ~3.0

R = = ~
Eg_v Ap—Ay

(16.11)

R does not depend on the properties of the star
or the amount of extinction. This is particularly
important in photometric distance determinations
because of the fact that the colour excess Ep_v
can be directly determined from the difference
between the observed colour index B — V and the
intrinsic colour (B — V)¢ known from the spec-
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and Stellar Systems, Vol. VII (The University of Chicago
Press, Chicago) p. 224). (b) Measured extinction curve,
normalised to make Eg_v = 1. (Hoyle, F., Narlikar, J.
(1980): The Physics-Astronomy Frontier (W.H. Freeman
and Company, San Francisco) p. 156. Used by permission)

tral class. One can then calculate the extinction

Ay ~3.0Ep_vy (16.12)
and finally the distance. Since the interstellar
medium is far from homogeneous, the colour ex-
cess method gives a much more reliable value
than using some average value for the extinction
in (4.18).

The wavelength dependence of the extinction,
A(A), can be studied by comparing the magni-
tudes of stars of the same spectral class in differ-
ent colours. These measurements have shown that
A(A) approaches zero as A becomes very large.
In practice A(A) can be measured up to a wave-
length of about two micrometres. The extrapola-
tion to zero inverse wavelength is then fairly re-
liable. Figure 16.4(a) shows A(A) as a function
of inverse wavelength. It also illustrates how the
quantities Ay and Ep_vy, which are needed in or-
der to calculate the value of R, are obtained from
this extinction or reddening curve. Figure 16.4(b)
shows the observed extinction curve. The points
in the ultraviolet (A < 0.3 m) are based on rocket
measurements.

It is clear from Fig. 16.4(b) that interstellar ex-
tinction is largest at short wavelengths in the ul-
traviolet and decreases for longer wavelengths. In
the infrared it is only about ten percent of the op-
tical extinction and in the radio region it is vanish-
ingly small. Objects that are invisible in the opti-
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cal region can therefore be studied at infrared and
radio wavelengths.

Another observed phenomenon caused by dust
is the polarisation of the light of the stars. Since
spherical particles cannot produce any polarisa-
tion, the interstellar dust particles have to be non-
spherical in shape. If the particles in a cloud are
aligned by the interstellar magnetic field, they
will polarise the radiation passing through the
cloud. The degree of polarisation and its wave-
length dependence give information on the prop-
erties of the dust particles. By studying the di-
rection of polarisation in various directions, one
can map the structure of the galactic magnetic
field.

In the Milky Way interstellar dust is essen-
tially confined to a very thin, about 100 pc, layer
in the galactic plane. The dust in other spiral
galaxies has a similar distribution and is directly
visible as a dark band in the disk of the galaxy
(Fig. 19.17 bottom). The Sun is located near
the central plane of the galactic dust layer, and
thus the extinction in the direction of the galac-
tic plane is very large, whereas the total extinc-
tion towards the galactic poles may be less than
0.1 magnitudes. This is apparent in the distribu-
tion of galaxies in the sky: at high galactic lat-
itudes, there are many galaxies, while near the
galactic plane, there is a 20° zone where hardly
any galaxies are seen. This empty region is called
the zone of avoidance.

If a homogeneous dust layer gives rise to a to-
tal extinction of Am magnitudes in the vertical
direction, then according to Fig. 16.5, the total
extinction at galactic latitude b will be

Am(b) = Am/sinb. (16.13)

If the galaxies are uniformly distributed in space,

then in the absence of extinction, the number of

galaxies per square degree brighter than the mag-
nitude m would be

lg No(m) =0.6m + C, (16.14)

where C is a constant (see Exercise 17.1). How-

ever, due to extinction, a galaxy that would oth-

erwise have the apparent magnitude m will have

bm‘é‘“b

observer

Fig. 16.5 In a homogeneous medium the extinction in
magnitudes is proportional to the pathlength traversed.
If the extinction in the direction of the galactic pole is
Am, then the extinction at the galactic latitude b will be
Am/sinb

the magnitude

m(b) =mo+ Am(b) =mo + Am/sinb,
(16.15)
where b is the galactic latitude. Thus the observ-
able number of galaxies at latitude b will be

lg N(m, b) =1g No(m — Am (b))
=0.6(m — Am(b)) +C
=lg No(m) — 0.6 Am (b)

or

, Am
IgN(m,b)=C" —0.6—, (16.16)
sinb
where C’' =1g No(m) does not depend on the
galactic latitude. By making galaxy counts at var-
ious latitudes b, the extinction Am can be de-
termined. The value obtained from galaxy counts
made at Lick Observatory is Ampg = 0.51 mag.
The total vertical extinction of the Milky Way
has also been determined from the colour ex-
cesses of stars. These investigations have yielded
much smaller extinction values, about 0.1 mag. In
the direction of the north pole, extinction is only
0.03 mag. The disagreement between the two ex-
tinction values is probably largely due to the fact
that the dust layer is not really homogeneous. If
the Sun is located in a local region of low dust
content, the view towards the galactic poles might
be almost unobstructed by dust.
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Fig. 16.6 The Coalsack is a dark nebula next to the Southern Cross. (Photograph K. Mattila, Helsinki University)

Dark Nebulae Observations of other galaxies
show that the dust is concentrated in the spi-
ral arms, in particular at their inner edge. In ad-
dition dust is concentrated in individual clouds,
which appear as star-poor regions or dark nebulae
against the background of the Milky Way. Exam-
ples of dark nebulae are the Coalsack in the south-
ern sky (Fig. 16.6) and the Horsehead nebula
in Orion. Sometimes the dark nebulae form ex-
tended winding bands, and sometimes small, al-
most spherical, objects. Objects of the latter type
are most easy to see against a bright background,
e.g. a gas nebula (see Fig. 16.19). These objects
have been named globules by Bart J. Bok, who

put forward the hypothesis that they are clouds
that are just beginning to contract into stars.

The extinction by a dark nebula can be illus-
trated and studied by means of a Wolf diagram,
shown schematically in Fig. 16.7. The diagram is
constructed on the basis of star counts. The num-
ber of stars per square degree in some magnitude
interval (e.g. between magnitudes 14 and 15) in
the cloud is counted and compared with the num-
ber outside the nebula. In the comparison area,
the number of stars increases monotonically to-
wards fainter magnitudes. In the dark nebula the
numbers first increase in the same way, but be-
yond some limiting magnitude (10 in the figure)
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Fig. 16.7 Wolf diagram. The horizontal coordinate is the
magnitude and the vertical coordinate is the number of
stars per square degree in the sky brighter than that mag-
nitude. A dark nebula diminishes the brightness of stars
lying behind it by the amount Am

the number of stars falls below that outside the
cloud. The reason for this is that the fainter stars
are predominantly behind the nebula, and their
brightness is reduced by some constant amount
Am (2 magnitudes in the figure). The brighter
stars are mostly in front of the nebula and suffer
no extinction.

Reflection Nebulae If a dust cloud is near
a bright star, it will scatter, i.e. reflect the light
of the star. Thus individual dust clouds can some-
times be observed as bright reflection nebulae.
Some 500 reflection nebulae are known.

The regions in the sky richest in reflection
nebulae are the areas around the Pleiades and
around the giant star Antares. Antares itself is
surrounded by a large red reflection nebula. This
region is shown in Fig. 16.8. Figure 16.9 shows
the reflection nebula NGC 2068, which is located
near a large, thick dust cloud a few degrees north-
west of Orion’s belt. It is one of the brightest
reflection nebulae and the only one included in
the Messier catalogue (M78). In the middle of
the nebula there are two stars of about 11 mag-
nitudes. The northern star illuminates the nebula,
while the other one is probably in front of the
nebula. Figure 16.10 shows the reflection nebula

NGC 1435 around Merope in the Pleiades. An-
other bright and much-studied reflection nebula is
NGC 7023 in Cepheus. It, too, is connected with
a dark nebula. The illuminating star has emission
lines in its spectrum (spectral type Be). Infrared
stars have also been discovered in the area of the
nebula, probably a region of star formation.

In 1922 Edwin Hubble published a fundamen-
tal investigation of bright nebulae in the Milky
Way. On the basis of extensive photographic and
spectroscopic observations, he was able to estab-
lish two interesting relationships. First he found
that emission nebulae only occur near stars with
spectral class earlier than B0, whereas reflec-
tion nebulae may be found near stars of spectral
class B1 and later. Secondly Hubble discovered
a relationship between the angular size R of the
nebula and the apparent magnitude m of the illu-
minating star:

51g R = —m + const. (16.17)

Thus the angular diameter of a reflection neb-
ula is larger for a brighter illuminating star. Since
the measured size of a nebula generally increases
for longer exposures, i.e. fainter limiting surface
brightness, the value of R should be defined to
correspond to a fixed limiting surface brightness.
The value of the constant in the Hubble relation
depends on this limiting surface brightness. The
Hubble relation for reflection nebulae is shown in
Fig. 16.11, based on measurements by Sidney van
den Bergh from Palomar Sky Atlas plates. Each
point corresponds to a reflection nebula and the
straight line represents the relation (16.17), where
the value of the constant is 12.0 (R is given in arc
minutes).

The Hubble relation can be derived theo-
retically, if it is assumed that the illumination
of a dust cloud is inversely proportional to the
square of the distance to the illuminating star, and
that the dust clouds are uniformly distributed in
space. The theoretical Hubble relation also gives
an expression for the constant on the right-hand
side, which involves the albedo and the phase
function of the grains.

The observations of reflection nebulae show
that the albedo of interstellar grains must be quite
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Fig. 16.8 Bright and dark nebulae in Scorpius and Ophi-
uchus. Photograph (a) was taken in the blue colour re-
gion, A = 350-500 nm, and (b) in the red colour region,
A = 600-680 nm. (The sharp rings in (b) are reflections
of Antares in the correction lens of the Schmidt camera.)
The nebulae located in the area are identified in draw-
ing (c). B44 and H4 are dark nebulae. There is a large
reflection nebula around Antares, which is faintly visible
in the blue (a), but bright in the red (b) regions. Antares
is very red (spectral class M1) and therefore the reflec-

high. It has not yet been possible to obtain its pre-
cise numerical value in this way, since the dis-
tances between the nebulae and their illuminating
stars are not known well enough.

One may also consider the surface brightness
of dark nebulae that are not close enough to a star
to be visible as reflection nebulae. These nebulae
will still reflect the diffuse galactic light from all
the stars in the Milky Way. Calculations show that
if the dust grains have a large albedo, then the

tion nebula is also red. In contrast, the reflection nebu-
lae around the blue stars p Ophiuchi (B2), CD-24° 12684
(B3), 22 Scorpii (B2) and o Scorpii (B1) are blue and are
visible only in (a). In (b) there is an elongated nebula to
the right of o Scorpii, which is invisible in (a). This is an
emission nebula, which is very bright in the red hydro-
gen Hy, line (656 nm). In this way reflection and emission
nebulae can be distinguished by means of pictures taken in
different wavelength regions. (Photograph (a) E. Barnard,
and (b) K. Mattila)

reflected diffuse light should be bright enough to
be observable, and it has indeed been observed.
Thus the dark nebulae are not totally dark. The
diffuse galactic light constitutes about 20-30 %
of the total brightness of the Milky Way.

Dust Temperature In addition to scattering
the interstellar grains also absorb radiation. The
absorbed energy is re-radiated by the grains
at infrared wavelengths corresponding to their
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Fig. 16.9 The reflection
nebula NGC 2068 (M78) in
Orion. In the middle of the
nebula there are two stars
of about magnitude 11. The
northern one (at the top) is
the illuminating star, while
the other one probably lies
in the foreground.
(Photography Lunar and
Planetary Laboratory,
Catalina Observatory)

Fig. 16.10 The reflection
nebula NGC 1435 around
Merope (23 Tau, spectral
class B6) in the Pleiades.
This figure should be
compared with Fig. 16.1,
where Merope is visible as
the lowest of the bright
stars in the Pleiades.
(National Optical
Astronomy Observatories,
Kitt Peak National
Observatory)
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Fig. 16.11 The Hubble relation for reflection nebulae.
The horizontal axis shows the radius R of the nebulae in
arc minutes and the vertical axis, the (blue) apparent mag-
nitude m of the central star. No measurements were made
in the hatched region. (van den Bergh, S. (1966): Astron.
J. 71, 990)

temperatures. The temperature of dust in inter-
stellar space (including dark nebulae) is about
1020 K. The corresponding wavelength ac-
cording to Wien’s displacement law (5.21) is
300-150 pum. Near a hot star the temperature of
the dust may be 100-600 K and the maximum
emission is then at 30-5 pm. In HII regions the
dust temperature is about 70-100 K.

The rapid development of infrared astronomy
in the 1970’s has brought all the above-mentioned
dust sources within the reach of observations
(Fig. 16.12). In addition infrared radiation from
the nuclei of normal and active galaxies is largely
thermal radiation from dust. Thermal dust emis-
sion is one of the most important sources of in-
frared radiation in astronomy.

Fig. 16.12 Interstellar dust is best seen in infrared wave-
lengths. Two examples of the images by the IRAS satel-
lite. (a) In a view towards the Galactic centre, the dust is
seen to be concentrated in a narrow layer in the galactic
plane. Several separate clouds are also seen. (b) Most of

the constellation Orion is covered by a complex area of in-
terstellar matter. The densest concentrations of dust below
the centre of the image, are in the region of the Horsehead
nebula and the Orion nebula. (Photos NASA)
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Fig. 16.13 More than 99 % of the radiation from the
n Carinae nebula (Fig. 13.10) is in the infrared. The
peak in the visual region is from the hydrogen H, line
(0.66 um). In the infrared, the silicate emission from dust
is evident at 10 pm. (Allen, D.A. (1975): Infrared, the New
Astronomy (Keith Reid Ltd., Shaldon) p. 103)

One of the strongest infrared sources in the
sky is the nebula around the star n Carinae. The
nebula consists of ionised gas, but infrared radi-
ation from dust is also clearly visible in its spec-
trum (Fig. 16.13). In even more extreme cases,
the central star may be completely obscured,
but revealed by the infrared emission from hot
dust.

Composition and Origin of the Dust (Ta-
bles 16.1 and 16.2). From the peaks in the ex-
tinction curve, it may be concluded that inter-
stellar dust contains water ice and silicates, and
probably graphite as well. The sizes of the grains
can be deduced from their scattering properties;
usually they are smaller than one micrometre.
The strongest scattering is due to grains of about
0.3 um but smaller particles must also be present.

Dust grains are formed in the atmospheres of
stars of late spectral types (K, M). Gas condenses

into grains just as water in the Earth’s atmosphere
may condense into snow and ice. The grains are
then expelled into interstellar space by the ra-
diation pressure. Grains may also form in con-
nection with star formation and possibly directly
from atoms and molecules in interstellar clouds
as well.

16.2 Interstellar Gas

The mass of gas in interstellar space is a hundred
times larger than that of dust. Although there is
more gas, it is less easily observed, since the gas
does not cause a general extinction of light. In the
optical region it can only be observed on the basis
of a small number of spectral lines.

The existence of interstellar gas began to be
suspected in the first decade of the 20th cen-
tury, when in 1904 Johannes Hartmann observed
that some absorption lines in the spectra of cer-
tain binary stars were not Doppler shifted by
the motions of the stars like the other lines. It
was concluded that these absorption lines were
formed in gas clouds in the space between the
Earth and the stars. In some stars there were sev-
eral lines, apparently formed in clouds moving
with different velocities. The strongest lines in
the visible region are those of neutral sodium
and singly ionised calcium (Fig. 16.14). In the
ultraviolet region, the lines are more numerous.
The strongest one is the hydrogen Lyman « line
(121.6 nm).

On the basis of the optical and ultraviolet lines,
it has been found that many atoms are ionised in
interstellar space. This ionisation is mainly due
to ultraviolet radiation from stars and, to some
extent, to ionisation by cosmic rays. Since the
density of interstellar matter is very low, the free
electrons only rarely encounter ions, and the gas
remains ionised.

About thirty elements have been discovered by
absorption line observations in the visible and ul-
traviolet region. With a few exceptions, all ele-
ments from hydrogen to zinc (atomic number 30)
and a few additional heavier elements have been
detected (Table 16.3). Like in the stars, most of
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Table 16.1 Main
properties of interstellar
gas and dust

Property
Mass fraction

Composition

Particle density
Mass density

Temperature

Method of study

Gas Dust

10 % 0.1 %

HI, HII, H; (70 %) Solid particles

He (28 %) d~0.1-1 pm

C, N, O, Ne, Na, H>O (ice), silicates,
Mg, AL, Si, S, ... (2 %) graphite + impurities

1 /em? 10713 Jem® =100 /km?
102! kg/m3 10723 kg/m3

100 K (HI), 10* K (HII) 1020 K

50 K (Hp)

Absorption lines in stellar spectra.

Absorption and scattering of

Optical: starlight.
Cal, Call, Nal, Interstellar reddening
KI, Till, Fel, Interstellar polarisation
CN, CH, CH" Thermal infrared emission
Ultraviolet:
H,, CO, HD

Radio lines:
hydrogen 21 cm
emission and absorption;
HIL Hell, CII
recombination lines;
molecular emission and
absorption lines
OH, H,CO, NH3, H,0,
CO, H,C,HCN, C,HsOH

the mass is hydrogen (about 70 %) and helium
(almost 30 %). On the other hand, heavy elements
are significantly less abundant than in the Sun and
other population I stars. It is thought that they
have been incorporated into dust grains, where
they do not produce any absorption lines. The
element abundances in the interstellar medium
(gas + dust) would then be normal, although the
interstellar gas is depleted in heavy elements.
This interpretation is supported by the observa-
tion that in regions where the amount of dust is
smaller than usual, the element abundances in the
gas are closer to normal.

Atomic Hydrogen Ultraviolet observations
have provided an excellent way of studying in-
terstellar neutral hydrogen. The strongest inter-
stellar absorption line, as has already been men-
tioned, is the hydrogen Lyman « line (Fig. 16.15).
This line corresponds to the transition of the elec-
tron in the hydrogen atom from a state with prin-
cipal quantum number n = 1 to one with n = 2.

The conditions in interstellar space are such that
almost all hydrogen atoms are in the ground
state with n = 1. Therefore the Lyman « line is
a strong absorption line, whereas the Balmer ab-
sorption lines, which arise from the excited initial
state n = 2, are unobservable. (The Balmer lines
are strong in stellar atmospheres with tempera-
tures of about 10,000 K, where a large number of
atoms are in the first excited state.)

The first observations of the interstellar Lyman
o line were made from a rocket already in 1967.
More extensive observations comprising 95 stars
were obtained by the OAO 2 satellite. The dis-
tances of the observed stars are between 100 and
1000 parsecs.

Comparison of the Lyman « observations with
observations of the 21 cm neutral hydrogen line
have been especially useful. The distribution of
neutral hydrogen over the whole sky has been
mapped by means of the 21 c¢cm line. However,
the distances to nearby hydrogen clouds are diffi-
cult to determine from these observations. In the
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Table 16.2 Phenomena caused by the interstellar medium

Observable phenomenon

Interstellar extinction and polarisation

Dark nebulae, uneven distribution of stars and galaxies
Interstellar absorption lines in stellar spectra
Reflection nebulae

Emission nebulae or H II regions (optical, infrared and
radio emission)

Optical galactic background (diffuse galactic light)

Galactic background radiation:
(a) short wavelength (< 1 m)
(b) long wavelength (= 1 m)

Galactic 21 cm emission
Molecular line emission (extended)

Point-like OH, H,O and SiO sources

Fig. 16.14 (a) The D
lines Dy and D, of
interstellar sodium (rest
wavelengths 589.89 and
589.00 nm) in the spectrum
of the star HD 14134. Both
lines consist of two
components formed in the
gas clouds of two spiral
arms. The radial velocity
difference of the arms is
about 30 km/s. (Mt. Wilson
Observatory). (b) The
interstellar absorption lines
of ionised calcium Ca IT
and ionised methylidyne
CH™ in the spectra of
several stars. The emission
spectrum of iron is shown
for comparison in (a) and
(b). (Lick Observatory)

Lyman o observations one usually knows the dis-
tance to the star in front of which the absorbing
clouds must lie.

The average gas density within about 1 kpc
of the Sun derived from the Lyman o« observa-
tions is 0.7 atoms/cm>. Because the interstellar
Lyman « line is so strong, it can be observed even

Cause

Non-spherical dust grains aligned by magnetic field
Dust clouds

Atoms and molecules in the interstellar gas
Interstellar dust clouds illuminated by nearby stars

Interstellar gas and dust cloud, where a nearby hot star
ionises the gas and heats the dust to 50-100 K

Interstellar dust illuminated by the integrated light of all
stars

Free—free emission from hot interstellar gas

Synchrotron radiation from cosmic ray electrons in the
magnetic field

Cold (100 K) interstellar neutral hydrogen clouds (HI
regions)

Giant molecular clouds (masses even 10°-10° Mo),
dark nebulae

Maser sources near protostars and long-period variables

¢ Per

£ Per

k Ori
g'oriC
HD 190603

PCyg

CH*

CallH

in the spectra of very nearby stars. For exam-
ple, it has been detected by the Copernicus satel-
lite in the spectrum of Arcturus, whose distance
is only 11 parsecs. The deduced density of neu-
tral hydrogen between the Sun and Arcturus is
0.02-0.1 atoms/cm?. Thus the Sun is situated in
a clearing in the interstellar medium, where the
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Table 16.3 Element abundances in the interstellar
medium towards ¢ Ophiuchi and in the Sun. The abun-
dances are given relative to that of hydrogen, which has
been defined to be 1,000,000. An asterisk (*) means that

the abundance has been determined from meteorites. The
last column gives the ratio of the abundances in the inter-
stellar medium and in the Sun

Atomic number | Name Chemical symbol | Interstellar abundance | Solar abundance = Abundance ratio

1 Hydrogen H 1,000,000 1,000,000 1.00

2 Helium He 85,000 85,000 ~1

3 Lithium Li 0.000051 0.00158* 0.034
4 Beryllium Be <0.000070 0.000012 <5.8

5 Boron B 0.000074 0.0046* 0.016

6 Carbon C 74 370 0.20

7 Nitrogen N 21 110 0.19

8 Oxygen o 172 660 0.26

9 Fluorine F - 0.040 -

10 Neon Ne - 83 -

11 Sodium Na 0.22 1.7 0.13
12 Magnesium Mg 1.05 35 0.030
13 Aluminium | Al 0.0013 2.5 0.00052
14 Silicon Si 0.81 35 0.023
15 Phosphorus | P 0.021 0.27 0.079
16 Sulfur S 8.2 16 0.51

17 Chlorine Cl 0.099 0.45 0.22

18 Argon Ar 0.86 4.5 0.19
19 Potassium K 0.010 0.11 0.094
20 Calcium Ca 0.00046 2.1 0.00022
21 Scandium Sc - 0.0017 -
22 Titanium Ti 0.00018 0.055 0.0032
23 Vanadium v <0.0032 0.013 <0.25
24 Chromium | Cr <0.002 0.50 <0.004
25 Manganese | Mn 0.014 0.26 0.055
26 Iron Fe 0.28 25 0.011
27 Cobalt Co <0.19 0.032 <58
28 Nickel Ni 0.0065 1.3 0.0050
29 Copper Cu 0.00064 0.028 0.023
30 Zinc Zn 0.014 0.026 0.53

density is less than one tenth of the average den-
sity.

If a hydrogen atom in its ground state absorbs
radiation with a wavelength smaller than 91.2 nm,
it will be ionised. Knowing the density of neutral
hydrogen, one can calculate the expected distance
a 91.2 nm photon can propagate before being ab-
sorbed in the ionisation of a hydrogen atom. Even
in the close neighbourhood of the Sun, where the

density is exceptionally low, the mean free path
of a 91.2 nm photon is only about a parsec and
that of a 10 nm photon a few hundred parsecs.
Thus only the closest neighbourhood of the Sun
can be studied in the extreme ultraviolet (XUV)
spectral region.

The Hydrogen 21 cm Line The spins of the
electron and proton in the neutral hydrogen
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Fig. 16.15 Interstellar absorption lines in the ultraviolet
spectrum of ¢ Ophiuchi. The strongest line is the hydro-
gen Lyman o line (equivalent width, more than 1 nm).

atom in the ground state may be either paral-
lel or opposite. The energy difference between
these two states corresponds to the frequency of
1420.4 MHz. Thus transitions between these two
hyperfine structure energy levels will give rise to
a spectral line at the wavelength of 21.049 cm
(Fig. 5.8). The existence of the line was theo-
retically predicted by Hendrick van de Hulst in
1944, and was first observed by Harold Ewen
and Edward Purcell in 1951. Studies of this line
have revealed more about the properties of the
interstellar medium than any other method—one
might even speak of a special branch of 21 cm as-
tronomy. The spiral structure and rotation of the
Milky Way and other galaxies can also be studied
by means of the 21 cm line.

Usually the hydrogen 21 cm line occurs in
emission. Because of the large abundance of hy-
drogen, it can be observed in all directions in
the sky. Some observed 21 cm line profiles are
shown in Fig. 16.16. Rather than frequency or
wavelength, the radial velocity calculated from
the Doppler formula is plotted on the horizon-
tal axis. This is because the broadening of the
21 cm spectral line is always due to gas mo-
tions either within the cloud (turbulence) or of the
cloud as a whole. The vertical axis is mostly plot-
ted in terms of the antenna temperature T (see
Chap. 5), the usual radio astronomical measure
of intensity. The brightness temperature of an ex-
tended source is then Ty, = Ta/nB, where np is
the beam efficiency of the antenna.

For the 21 cm line hv/k = 0.07 K, and thus
hv/kT <« 1 for all relevant temperatures. One

The observations were made with the Copernicus satellite.
(Morton, D.C. (1975): Astrophys. J. 197, 85)
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Fig. 16.16 Hydrogen 21 cm emission line profiles in the
galactic plane at longitude 180°, 90° and 1° (in the direc-
tion / = 0° there is strong absorption). The horizontal axis
gives the radial velocity according to the Doppler formula,
the vertical axis gives the brightness temperature. (Burton,
W.B. (1974): “The Large Scale Distribution of Neutral
Hydrogen in the Galaxy”, in Galactic and Extra-Galac-
tic Radio Astronomy, ed. by Verschuur, G.L., Kellermann,
K.I. (Springer, Berlin, Heidelberg, New York) p. 91)

may therefore use the Rayleigh—Jeans approxi-
mation (5.24)

AT

I="— (16.18)

c
In the solution of the equation of radiative trans-
fer (5.42) the intensity can thus be directly related
to a corresponding temperature. By definition,
1, is related to the brightness temperature Ty, and
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the source function S, is related to the excitation

temperature 7exc, i.€.
szTexc(l —eff"). (16.19)

In certain directions in the Milky Way there is

so much hydrogen along the line of sight that the
21 cm line is optically thick, t, > 1. In that case

Ty, = Texc, (16.20)
i.e. the brightness temperature immediately yields
the excitation temperature of the cloud. This is
often referred to as the spin temperature Ts.

The excitation temperature need not always
agree with the kinetic temperature of the gas.
However, in the present case the population num-
bers of the hyperfine levels are determined by
mutual collisions of hydrogen atoms: the time
between collisions is 400 years on the average,
whereas the time for spontaneous radiative transi-
tions is 11 million years; thus the excitation tem-
perature will be the same as the kinetic tempera-
ture. The observed temperature is 7 =~ 125 K.

The distance to a source cannot be obtained
directly from the observed emission. Thus one
can only study the number of hydrogen atoms in
a cylinder with a 1 cm? base area extending from
the observer to outside the Milky Way along the
line of sight. This is called the projected or col-
umn density and is denoted by N. One may also
consider the column density N(v)dv of atoms
with velocities in the interval [v, v + dv].

It can be shown that if the gas is optically
thin, the brightness temperature in a spectral line
is directly proportional to the column density N
of atoms with the corresponding radial velocity.
Hence, if the diameter L of a cloud along the line
of sight is known, the gas density can be deter-
mined from the observed line profile:

n=N/L.

The diameter L can be obtained from the ap-
parent diameter, if the distance and shape of the
cloud are assumed known.

The distances of clouds can be determined
from their radial velocities by making use of the
rotation of the Milky Way (Sect. 18.3). Thus if

the observed peaks in the 21 cm line profiles
(Fig. 16.16) are due to individual clouds, their
distances and densities can be obtained. Since
radio observations are not affected by extinc-
tion, it has been possible in this way to map the
density distribution of neutral hydrogen in the
whole galactic plane. The resulting distribution,
based on observations at Leiden and Parkes, is
shown in Fig. 16.17. It appears that the Milky
Way is a spiral galaxy and that the interstel-
lar hydrogen is concentrated in the spiral arms.
The average density of interstellar hydrogen is
1 atom/cm?, but the distribution is very inhomo-
geneous. Typically the hydrogen forms denser re-
gions, a few parsecs in size, where the densities
may be 10-100 atoms/cm>. Regions where the
hydrogen is predominantly neutral are known as
H I regions (in contrast to HII regions of ionised
hydrogen).

The hydrogen 21 cm line may also occur in
absorption, when the light from a bright radio
source, e.g. a quasar, passes through an interven-
ing cloud. The same cloud may give rise to both
an absorption and an emission spectrum. In that
case the temperature, optical thickness and hy-
drogen content of the cloud can all be derived.

Like interstellar dust hydrogen is concentrated
in a thin disk in the galactic plane. The thickness
of the hydrogen layer is about twice that of the
dust or about 200 pc.

HII Regions In many parts of space hydrogen
does not occur as neutral atoms, but is ionised.
This is true in particular around hot O stars,
which radiate strongly in the ultraviolet. If there
is enough hydrogen around such a star, it will
be visible as an emission nebula of ionised hy-
drogen. Such nebulae are known as HII region
(Figs. 16.18 and 16.19).

A typical emission nebula is the great nebula
in Orion, M42. It is visible even to the unaided
eye, and is a beautiful sight when seen through
a telescope. In the middle of the nebula there is
a group of four hot stars known as the Trapez-
ium, which can be distinguished inside the bright
nebula, even with a small telescope. The Trapez-
ium stars emit strong ultraviolet radiation, which
keeps the gas nebula ionised.
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Fig.16.17 The distribution of neutral hydrogen in the galaxy from the Leiden and Parkes surveys. The density is given
in atoms/cm?. (Oort, J.H., Kerr, P.T., Westerhout, G.L. (1958): Mon. Not. R. Astron. Soc. 118, 379)

Unlike a star a cloud of ionised gas has
a spectrum dominated by a few narrow emission
lines. The continuous spectrum of HII regions is
weak. In the visible region the hydrogen Balmer
emission lines are particularly strong. These are
formed when a hydrogen atom recombines into
an excited state and subsequently returns to the
ground state via a sequence of radiative transi-
tions. Typically a hydrogen atom in a HII re-
gion remains ionised for several hundred years.
Upon recombination it stays neutral for some
months, before being ionised again by a photon
from a nearby star.

The number of recombinations per unit time
and volume is proportional to the product of the
densities of electrons and ions,

(16.21)

Nyec X Nehj.

In completely ionised hydrogen, ne = ni, and
hence

(16.22)

2
frec X NG.

Most recombinations will include the transition
n =3 — 2,i.e. will lead to the emission of a H,
photon. Thus the surface brightness of a nebula in
the Hy line will be proportional to the emission
measure,

EM = / n2dl, (16.23)
where the integral is along the line of sight
through the nebula.

The ionisation of a helium atom requires more
energy than that of a hydrogen atom, and thus re-
gions of ionised helium are formed only around
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Fig. 16.18 The great
nebula in Orion (M42,
NGC 1976). The nebula
gets its energy from newly
formed hot stars. The dark
regions are opaque dust
clouds in front of the
nebula. Radio and infrared
observations have revealed
a rich molecular cloud
behind the nebula

(Fig. 16.20). In the upper
part of this picture is the
gas nebula NGC 1977, in
the lower part the bright
star ¢ Orionis. (Lick
Observatory)

the hottest stars. In these cases, a large H I region
will surround a smaller central He™ or He™™ re-
gion. The helium lines will then be strong in the
spectrum of the nebula.

Although hydrogen and helium are the main
constituents of clouds, their emission lines are
not always strongest in the spectrum. At the be-
ginning of this century it was even suggested
that some strong unidentified lines in the spec-
tra of nebulae were due to the new element neb-
ulium. However, in 1927 Ira S. Bowen showed
that they were forbidden lines of ionised oxygen
and nitrogen, OF, O™ and N, Forbidden lines
are extremely difficult to observe in the labora-
tory, because their transition probabilities are so
small that at laboratory densities the ions are de-

excited by collisions before they have had time
to radiate. In the extremely diffuse interstellar
gas, collisions are much less frequent, and thus
there is a chance that an excited ion will make
the transition to a lower state by emitting a pho-
ton.

Because of interstellar extinction, only the
nearest H Il regions can be studied in visible light.
At infrared and radio wavelengths much more
distant regions can be studied. The most impor-
tant lines at radio wavelengths are recombination
lines of hydrogen and helium; thus the hydro-
gen transition between energy levels 110 and 109
at 5.01 GHz has been much studied. These lines
are also important because with their help radial
velocities, and hence (using the galactic rotation
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Fig. 16.19 The Lagoon
nebula (M8, NGC 6523) in
Sagittarius. This HII
region contains many stars
of early spectral types and
stars that are still
contracting towards the
main sequence. Small,
round dark nebulae,
globules, are also visible
against the bright
background. These are
presumably gas clouds in
the process of condensation
into stars. (National
Optical Astronomy
Observatories, Kitt Peak
National Observatory)

law), distances of H Il regions can be determined,
just as for neutral hydrogen.

The physical properties of HII regions can
also be studied by means of their continuum radio
emission. The radiation is due to bremsstrahlung
or free—free emission from the electrons. The in-
tensity of the radiation is proportional to the emis-
sion measure EM defined in (16.23). HII regions
also have a strong infrared continuum emission.
This is thermal radiation from dust inside the neb-
ula.

HII regions are formed when a hot O or B star
begins to ionise its surrounding gas. The ionisa-
tion steadily propagates away from the star. Be-
cause neutral hydrogen absorbs ultraviolet radia-
tion so efficiently, the boundary between the H II
region and the neutral gas is very sharp. In a ho-
mogeneous medium the H II region around a sin-
gle star will be spherical, forming a Stromgren
sphere. For a BO V star the radius of the Strom-
gren sphere is 50 pc and for an AO V star only
1 pe.

The temperature of a HII region is higher
than that of the surrounding gas, and it therefore
tends to expand. After millions of years, it will
have become extremely diffuse and will eventu-
ally merge with the general interstellar medium.

16.3 Interstellar Molecules

The first interstellar molecules were discov-
ered in 1937-1938, when molecular absorp-
tion lines were found in the spectra of some
stars. Three simple diatomic molecules were de-
tected: methylidyne CH, its positive ion CH™
and cyanogen CN. A few other molecules were
later discovered by the same method in the ul-
traviolet. Thus molecular hydrogen Hy was dis-
covered in the early 1970’s, and carbon monox-
ide, which had been discovered by radio ob-
servations, was also detected in the ultraviolet.
Molecular hydrogen is the most abundant in-
terstellar molecule, followed by carbon monox-
ide.

Molecular Hydrogen The detection and study
of molecular hydrogen has been one of the
most important achievements of UV astronomy.
Molecular hydrogen has a strong absorption band
at 105 nm, which was first observed in a rocket
experiment in 1970 by George R. Carruthers, but
more extensive observations could only be made
with the Copernicus satellite. The observations
showed that a significant fraction of interstellar
hydrogen is molecular, and that this fraction in-
creases strongly for denser clouds with higher ex-
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Fig. 16.20 Radio map of
the distribution of carbon
monoxide 1*C!60 in the
molecular cloud near the
Orion nebula. The curves
are lines of constant
intensity. (Kutner, M.L.,
Evans II, N.J., Tucker,
K.D. (1976): Astrophys. J.
209, 452)

tinction. In clouds with visual extinction larger
than one magnitude essentially all the hydrogen
is molecular.

Hydrogen molecules are formed on the surface
of interstellar grains, which thus act as a chem-
ical catalyst. Dust is also needed to shield the
molecules from the stellar UV radiation, which
would otherwise destroy them. Molecular hydro-
gen is thus found where dust is abundant. It is of
interest to know whether gas and dust are well
mixed or whether they form separate clouds and
condensations.

UV observations have provided a reliable way
of comparing the distribution of interstellar gas
and dust. The amount of dust between the ob-
server and a star is obtained from the extinction of
the stellar light. Furthermore, the absorption lines
of atomic and molecular hydrogen in the ultravi-
olet spectrum of the same star can be observed.
Thus the total amount of hydrogen (atomic +
molecular) between the observer and the star can
also be determined.

Observations indicate that the gas and dust
are well mixed. The amount of dust giving rise
to one magnitude visual extinction corresponds
to 1.9 x 102! hydrogen atoms (one molecule is
counted as two atoms). The mass ratio of gas and
dust obtained in this way is 100.

Radio Spectroscopy Absorption lines can only
be observed if there is a bright star behind the
molecular cloud. Because of the large dust extinc-
tion, no observations of molecules in the densest
clouds can be made in the optical and ultravio-
let spectral regions. Thus only radio observations
are possible for these objects, where molecules
are especially abundant.

Radio spectroscopy signifies an immense step
forward in the study of interstellar molecules. In
the early 1960’s, it was still not believed that there
might be more complicated molecules than di-
atomic ones in interstellar space. It was thought
that the gas was too diffuse for molecules to
form and that any that formed would be destroyed
by ultraviolet radiation. The first molecular radio
line, the hydroxyl radical OH, was discovered in
1963. Many other molecules have been discov-
ered since then. By 2002, about 130 molecules
had been detected, the heaviest one being the
13-atom molecule HCN.

Molecular lines in the radio region may be ob-
served either in absorption or in emission. Ra-
diation from diatomic molecules like CO (see
Fig. 16.20) may correspond to three kinds of
transitions. (1) Electron transitions correspond to
changes in the electron cloud of the molecule.
These are like the transitions in single atoms, and
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Table 16.4 Some molecules observed in the interstellar
medium

Molecule | Name Year of discovery

Discovered in the optical and ultraviolet region:

CH methylidyne 1937
CH* methylidyne ion 1937
CN cyanogen 1938
H; hydrogen molecule 1970
CO carbon monoxide 1971
Discovered in the radio region:

OH hydroxyl radical 1963
CcO carbon monoxide 1970
CS carbon monosulfide | 1971
SiO silicon monoxide 1971
SO sulfur monoxide 1973
H,0 water 1969
HCN hydrogen cyanide 1970
NH; ammonia 1968
H,CO formaldehyde 1969
HCOOH | formic acid 1975
HCCNC isocyanoacetylene 1991
C,H40 vinyl alcohol 2001
H,CCCC | cumulene carbene 1991
(CH3)20 | dimethyl ether 1974
C,H50H | ethanol 1975
HC|IN cyanopentacetylene | 1981

their wavelengths lie in the optical or ultraviolet
region. (2) Vibrational transitions correspond to
changes in the vibrational energy of the molecule.
Their energies are usually in the infrared region.
(3) Most important for radio spectroscopy are the
rotational transitions, which are changes in the
rotational energy of the molecule. Molecules in
their ground state do not rotate, i.e. their angular
momentum is zero, but they may be excited and
start rotating in collisions with other molecules.
For example, carbon sulfide CS returns to its
ground state in a few hours by emitting a millime-
tre region photon.

A number of interstellar molecules are listed
in Table 16.4. Many of them have only been de-
tected in the densest clouds (mainly the Sagittar-
ius B2 cloud at the galactic centre), but others are
very common. The most abundant molecule Hj
cannot be observed at radio wavelengths, because

it has no suitable spectral lines. The next most
abundant molecules are carbon monoxide CO,
the hydroxyl radical OH and ammonia NHj3, al-
though their abundance is only a small fraction
of that of hydrogen. However, the masses of in-
terstellar clouds are so large that the number
of molecules is still considerable. (The Sagittar-
ius B2 cloud contains enough ethanol, C;HsOH,
for 1028 bottles of vodka.)

Both the formation and survival of interstel-
lar molecules requires a higher density than is
common in interstellar clouds; thus they are most
common in dense clouds. Molecules are formed
in collisions of atoms or simpler molecules or
catalysed on dust grains. Molecular clouds must
also contain a lot of dust to absorb the ultravio-
let radiation entering from outside that otherwise
would disrupt the molecules. The most suitable
conditions are thus found inside dust and molec-
ular clouds near dense dark nebulae and HII re-
gions.

Most of the molecules in Table 16.4 have only
been detected in dense molecular clouds occur-
ring in connection with HII regions. Almost ev-
ery molecule yet discovered has been detected in
Sagittarius B2 near the galactic centre. Another
very rich molecular cloud has been observed near
the HII region Orion A. In visible light this re-
gion has long been known as the Orion neb-
ula M42 (Fig. 16.18). Inside the actual HII re-
gions there are no molecules, since they would be
rapidly dissociated by the high temperature and
strong ultraviolet radiation. Three types of molec-
ular sources have been found near HII regions
(Fig. 16.21):

1. Large gas and dust envelopes around the HII
region.

2. Small dense clouds inside these envelopes.

3. Very compact OH and H,O maser sources.

The large envelopes have been discovered pri-
marily by CO observations. OH and H,CO have
also been detected. Like in the dark nebulae the
gas in these clouds is probably mainly molecular
hydrogen. Because of the large size and density
(n ~ 10°-10* molecules/cm?) of these clouds,
their masses are very large, 10° or even 10° solar
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Table 16.5 The five
phases of interstellar gas r n 3
(K] [cm™]

1. Very cold molecular gas clouds (mostly hydrogen H») 20 P 103

2. Cold gas clouds (mostly atomic neutral hydrogen) 100 20

3. Warm neutral gas enveloping the cooler clouds 6000 0.05-0.3

4. Hot ionised gas (mainly HII regions around hot stars) 8000 >0.5

5. Very hot and diffuse ionised coronal gas, ionised and 106 1073

heated by supernova explosions
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Fig. 16.21 Infrared map of the central part of the Orion
nebula. In the lower part are the four Trapezium stars.
Above is an infrared source of about 0.5” diameter, the
Kleinmann-Low nebula (KL). BN is an infrared point
source, the Becklin—-Neugebauer object. Other infrared
sources are denoted IRS. The large crosses indicate OH
masers and the small crosses H)O masers. On the scale
of Fig. 16.18 this region would only be a few millimetres
in size. (Goudis, C. (1982): The Orion Complex: A Case
Study of Interstellar Matter (Reidel, Dordrecht) p. 176)

masses (SgrB2). They are among the most mas-
sive objects in the Milky Way. The dust in molec-
ular clouds can be observed on the basis of its
thermal radiation. Its peak falls at wavelengths of
10—100 pm, corresponding to a dust temperature
of 30-300 K.

Some interstellar clouds contain very small
maser sources. In these the emission lines of OH,

H,0 and SiO may be many million times stronger
than elsewhere. The diameter of the radiating re-
gions is only about 5-10 au. The conditions in
these clouds are such that radiation in some spec-
tral lines is amplified by stimulated emission as it
propagates through the cloud. Hydroxyl and wa-
ter masers occur in connection with dense HII
regions and infrared sources, and appear to be re-
lated to the formation of protostars. In addition
maser emission (OH, H>,O and SiO) occurs in
connection with Mira variables and some red su-
pergiant stars. This maser emission comes from
a molecule and dust envelope around the star,
which also gives rise to an observable infrared ex-
cess.

16.4 The Formation of Protostars

The mass of the Milky Way is about 10'! solar
masses. Since its age is about 10'° years, stars
have been forming at the average rate of 10 M,
per year. This estimate is only an upper limit for
the present rate, because earlier the rate of star
formation must have been much higher. Since
the lifetime of O stars is only about a million
years, a better estimate of the star formation rate
can be made, based on the observed number of
O stars. Accordingly, it has been concluded that at
present, new stars are forming in the Milky Way
at a rate of about three solar masses per year.
Stars are now believed to form inside large
dense interstellar clouds mostly located in the
spiral arms of the Galaxy. Under its own grav-
ity, a cloud begins to contract and fragment into
parts that will become protostars. The observa-
tions seem to indicate that stars are not formed
individually, but in larger groups. Young stars are
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found in open clusters and in loose associations,
typically containing a few hundred stars which
must have formed simultaneously.

Theoretical calculations confirm that the for-
mation of single stars is almost impossible. An
interstellar cloud can contract only if its mass is
large enough for gravity to overwhelm the pres-
sure. As early as in the 1920’s, James Jeans cal-
culated that a cloud with a certain temperature
and density can condense only if its mass is high
enough. If the mass is too small the pressure of
the gas is sufficient to prevent the gravitational
contraction. The limiting mass is the Jeans mass
(Sect. 6.11), given by

T3
My~3x 104‘/71\4@,

where 7 is the density in atoms/m> and T the tem-
perature.

In a typical interstellar neutral hydrogen cloud
n=10%and T = 100 K, giving the Jeans mass,
30,000 M. In the densest dark clouds n = 1012
and T = 10 K and hence, My =1 M.

It is thought that star formation begins in
clouds of a few thousand solar masses and diam-
eters of about 10 pc. The cloud begins to contract,
but does not heat up because the liberated energy
is carried away by radiation. As the density in-
creases, the Jeans mass thus decreases. Because
of this, separate condensation nuclei are formed
in the cloud, which go on contracting indepen-
dently: the cloud fragments. Fragmentation is fur-
ther advanced by the increasing rotation velocity.
The original cloud has a certain angular momen-
tum which is conserved during the contraction;
thus the angular velocity must increase.

This contraction and fragmentation continues
until the density becomes so high that the individ-
ual fragments become optically thick. The energy
liberated by the contraction can then no longer
escape, and the temperature will begin to rise. In
consequence the Jeans mass begins to increase,
further fragmentation ceases and the rising pres-
sure in existing fragments stops their contrac-
tion. Some of the protostars formed in this way
may still be rotating too rapidly. These may split

into two, thus forming double systems. The fur-
ther evolution of protostars has been described in
Sect. 11.2.

Although the view that stars are formed by
the collapse of interstellar clouds is generally ac-
cepted, many details of the fragmentation process
are still highly conjectural. Thus the effects of ro-
tation, magnetic fields and energy input are very
imperfectly known. Why a cloud begins to con-
tract is also not certain; one theory is that passage
through a spiral arm compresses clouds and trig-
gers contraction (see Sect. 17.4). This would ex-
plain why young stars are predominantly found in
the spiral arms of the Milky Way and other galax-
ies. The contraction of an interstellar cloud might
also be initiated by a nearby expanding HII re-
gion or supernova explosion.

Star formation can be observed particularly
well in the infrared, since the temperatures of the
condensing clouds and protostars are of the or-
der 100-1000 K and the infrared radiation can
escape even the densest dust clouds. For exam-
ple, in connection with the Orion nebula there is
a large cloud of hydrogen, found in radio obser-
vations, containing small infrared sources. E.g.
the Becklin—Neugebauer object has a temperature
of a couple of hundred kelvins but a luminosity
that is thousandfold compared with the Sun. It is
a strong HoO maser source, located next to a large
HII region.

16.5 Planetary Nebulae

Bright regions of ionised gas do not occur only
in connection with newly formed stars, but also
around stars in late stages of their evolution.
The planetary nebulae are gas shells around
small hot blue stars. As we have seen in con-
nection with stellar evolution, instabilities may
develop at the stage of helium burning. Some
stars begin to pulsate, while in others the whole
outer atmosphere may be violently ejected into
space. In the latter case, a gas shell expanding at
20-30 km/s will be formed around a small and
hot (50,000-100,000 K) star, the core of the orig-
inal star.

The expanding gas in a planetary nebula is
ionised by ultraviolet radiation from the central
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Fig. 16.22 The Helix
nebula (NGC 7293). The
planetary nebulae are
formed during the final
stages of evolution of
solar-type stars. The
centrally visible star has
ejected its outer layers into
space. (National Optical
Astronomy Observatories,
Kitt Peak National
Observatory)

star, and its spectrum contains many of the same
bright emission lines as that of an HII region.
Planetary nebulae are, however, generally much
more symmetrical in shape than most HII re-
gions, and they expand more rapidly. For exam-
ple, the well-known Ring nebula in Lyra (M57)
has expanded visibly in photographs taken at
50-year intervals. In a few ten thousand years, the
planetary nebulae disappear in the general inter-
stellar medium and their central stars cool to be-
come white dwarfs.

The planetary nebulae were given their name
in the 19th century, because certain small nebulae
visually look quite like planets such as Uranus.
The apparent diameter of the smallest known
planetary nebulae is only a few arc seconds,
whereas the largest ones (like the Helix nebula)
may be one degree in diameter (Fig. 16.22).

The brightest emission lines are often due to
forbidden transitions, like in H1I regions. For ex-
ample, the green colour of the central parts of
the Ring nebula in Lyra is due to the forbid-
den lines of doubly ionised oxygen at 495.9 and
500.7 nm. The red colour of the outer parts is due
to the hydrogen Balmer « line (656.3 nm) and
the forbidden lines of ionised nitrogen (654.8 nm,
658.3 nm).

The total number of planetary nebulae in the
Milky Way has been estimated to be 50,000.
About 2000 have actually been observed.

16.6 Supernova Remnants

In Chap. 11 we have seen that massive stars end
their evolution in a supernova explosion. The col-
lapse of the stellar core leads to the violent ejec-
tion of the outer layers, which then remain as an
expanding gas cloud.

About 120 supernova remnants (SNR’s) have
been discovered in the Milky Way. Some of them
are optically visible as a ring or an irregular neb-
ula (e.g. the Crab nebula; see Fig. 16.23), but
most are detectable only in the radio region (be-
cause radio emission suffers no extinction).

In the radio region the SNR’s are extended
sources similar to HII regions. However, unlike
HII regions the radiation from SNR’s is often
polarised. Another characteristic difference be-
tween these two kinds of sources is that whereas
the radio brightness of HII regions grows or re-
mains constant as the frequency increases, that of
SNR’s falls off almost linearly (in a log /,, — log v
diagram) with increasing frequency (Fig. 16.24).

These differences are due to the different
emission processes in HII regions and in SNR’s.
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Fig. 16.23 The Crab
nebula (M1, NGC 1952) in
Taurus is the remnant of

a supernova explosion
observed in 1054. The
photograph was taken at
red wavelengths. The
nebula is also a strong
radio source. Its energy
source is the central rapidly
rotating neutron star,
pulsar, which is the
collapsed core of the
original star. (Palomar

Observatory)
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Fig. 16.24 The radio spectra of typical HII regions and
supernova remnants. The radiation of HII regions is ther-
mal and obeys the Rayleigh—Jeans law, I o v2, at wave-
lengths larger than 1 m. In supernova remnants the in-
tensity decreases with increasing frequency. (After Schef-
fler, H., Elsdsser, H. (1987): Physics of the Galaxy and
the Interstellar Matter (Springer, Berlin, Heidelberg, New
York))

In an HII region, the radio emission is free—free
radiation from the hot plasma. In a SNR it is
synchrotron radiation from relativistic electrons
moving in spiral orbits around the magnetic field

lines. The synchrotron process gives rise to a con-
tinuous spectrum extending over all wavelength
regions. For example, the Crab nebula looks blue
or green in colour photographs because of optical
synchrotron radiation.

In the Crab nebula red filaments are also visi-
ble against the bright background. Their emission
is principally in the hydrogen H, line. The hy-
drogen in a SNR is not ionised by a central star
as in the HII regions, but by the ultraviolet syn-
chrotron radiation.

The supernova remnants in the Milky Way fall
into two classes. One type has a clearly ring-like
structure (e.g. Cassiopeia A or the Veil nebula in
Cygnus; see Fig. 16.25); another is irregular and
bright at the middle (like the Crab nebula). In the
remnants of the Crab nebula type there is always
a rapidly rotating pulsar at the centre. This pulsar
provides most of the energy of the remnant by
continuously injecting relativistic electrons into
the cloud. The evolution of this type of SNR re-
flects that of the pulsar and for this reason has
a time scale of a few ten thousand years.

Ring-like SNR’s do not contain an energetic
pulsar; their energy comes from the actual super-
nova explosion. After the explosion, the cloud ex-
pands at a speed of 10,000-20,000 km/s. About
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Fig. 16.25 The Veil
nebula (NGC 6960 at the
right, NGC 6992 at the left)
in Cygnus is the remnant of
a supernova explosion
which occurred several ten
thousand years ago. (Mt.
Wilson Observatory)

50-100 years after the explosion the remnant be-
gins to form a spherical shell as the ejected gas
starts to sweep up interstellar gas and to slow
down in its outer parts. The swept-up shell ex-
pands with a decreasing velocity and cools until,
after about 100,000 years, it merges into the inter-
stellar medium. The two types of supernova rem-
nants may be related to the two types (I and II) of
supernovae.

Box 16.1 (Synchrotron Radiation) Synchro-
tron radiation was first observed in 1948 by
Frank Elder, Robert Langmuir and Herbert
Pollack, who were experimenting with an elec-
tron synchrotron, in which electrons were ac-
celerated to relativistic energies in a magnetic

field. It was observed that the electrons radi-
ated visible light in a narrow cone along their
momentary direction of motion. In astrophysics
synchrotron radiation was first invoked as an
explanation of the radio emission of the Milky
Way, discovered by Karl Jansky in 1931. This
radiation had a spectrum and a large metre-
wave brightness temperature (more than 107 K)
which were inconsistent with ordinary ther-
mal free-free emission from ionised gas. In
1950 Hannes Alfvén and Nicolai Herlofson as
well as Karl-Otto Kiepenheuer proposed that
the galactic radio background was due to syn-
chrotron radiation. According to Kiepenheuer
the high-energy cosmic ray electrons would
emit radio radiation in the weak galactic mag-
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netic field. This explanation has turned out to
be correct. Synchrotron radiation is also an
important emission process in supernova rem-
nants, radio galaxies and quasars. It is a non-
thermal radiation process, i.e. the energy of the
radiating electrons is not due to thermal mo-
tions.

T ¢ >

; Electron

Direction of
radiation
Direction of

electric field vector

The emission of synchrotron radiation. A charged par-
ticle (electron) propagating in a magnetic field moves
in a spiral. Because of the centripetal acceleration, the
particle emits electromagnetic radiation

The origin of synchrotron radiation is
schematically shown in the figure. The mag-
netic field forces the electron to move in a spi-
ral orbit. The electron is thus constantly accel-
erated and will emit electromagnetic radiation.
According to the special theory of relativity,
the emission from a relativistic electron will be
concentrated in a narrow cone. Like the beam
from a lighthouse, this cone sweeps across the
observer’s field of vision once for each revo-
lution. Thus the observer sees a sequence of
radiation flashes of very short duration com-
pared with their interval. (In the total emis-
sion of a large number of electrons, separate
flashes cannot be distinguished.) When this se-
ries of pulses is represented as a sum of differ-
ent frequency components (Fourier transform),
a broad spectrum is obtained with a maximum
at

Vmax = aBJ_EZ,

where B is the magnetic field component per-
pendicular to the velocity of the electron, and E
its energy, a is a constant of proportionality.

The table gives the frequency and wave-
length of the maximum as functions of the
electron energy for the typical galactic field
strength 0.5 nT:

Amax Vmax [Hz] E [eV]
300 nm 101 6.6 x 10'2
30 um 1013 6.6 x 1011
3 mm 10! 6.6 x 1010
30 cm 10° 6.6 x 10°
30m 107 6.6 x 108

To produce even radio synchrotron radia-
tion, very energetic electrons are required, but
these are known to be present in the cosmic ra-
diation. In the optical galactic background radi-
ation, the contribution from synchrotron radia-
tion is negligible, but, for example, in the Crab
nebula, a significant part of the optical emission
is due to this mechanism.

16.7 The Hot Corona of the Milky
Way

As early as 1956 Lyman Spitzer showed that the
Milky Way has to be surrounded by a large en-
velope of very hot gas (Fig. 16.26). Almost two
decades later the Copernicus satellite, whose sci-
entific program was directed by Spitzer, found
evidence for this kind of gas, which began to
be called galactic coronal gas, in analogy with
the solar corona. The satellite observed emis-
sion lines of e.g. five times ionised oxygen
(OVI), four times ionised nitrogen (NV) and
triply ionised carbon (CIV). The formation of
these lines requires a high temperature (100,000—
1,000,000 K), and a high temperature is also in-
dicated by the broadening of the lines.

Galactic coronal gas is distributed through
the whole Milky Way and extends several thou-
sand parsecs from the galactic plane. Its den-
sity is only of the order of 1073 atoms/cm?> (re-
call that the mean density in the galactic plane
is 1 atom/cm?). Thus coronal gas forms a kind
of background sea, from which the denser and
cooler forms of interstellar matter, such as neu-
tral hydrogen and molecular clouds, rise as is-
lands. In the early 1980’s the IUE satellite also
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Fig. 16.26 Galaxy’s hot corona. NGC 2403 is a spi-
ral galaxy, similar to our Milky Way. On the right, it
is photographed in visual light. On the left, in a VLA
radio image, on the same scale with the optical image,

detected similar coronae in the Large Magellanic
Cloud and in the spiral galaxy M100. Coronal gas
is probably quite a common and important form
of matter in galaxies.

Supernova explosions are probably the source
of both coronal gas and its energy. When a super-
nova explodes, it forms a hot bubble in the sur-
rounding medium. The bubbles from neighbour-
ing supernovae will expand and merge, forming
a foamlike structure. In addition to supernovae,
stellar winds from hot stars may provide some of
the energy of the coronal gas.

16.8 Cosmic Rays and the
Interstellar Magnetic Field

Cosmic Rays Elementary particles and atomic
nuclei reaching the Earth from space are called
cosmic rays. They occur throughout interstellar
space with an energy density of the same order
of magnitude as that of the radiation from stars.
Cosmic rays are therefore important for the ioni-
sation and heating of interstellar gas.

Since cosmic rays are charged, their direction
of propagation in space is constantly changed
by the magnetic field. Their direction of arrival

a large hydrogen corona is seen around the galaxy. Large
holes created by supernova explosions are seen in the gas
corona. (Image NRAO/AUI and Tom Oosterloo, Astron,
The Netherlands)

therefore gives no information about their place
of origin. The most important properties of cos-
mic rays that can be observed from the Earth
are their particle composition and energy distri-
bution. As noted in Sect. 3.6, these observations
have to be made in the upper atmosphere or from
satellites, since cosmic ray particles are destroyed
in the atmosphere.

The main constituent of the cosmic rays (about
90 %) is hydrogen nuclei or protons. The second
most important constituent (about 9 %) is helium
nuclei or « particles. The rest of the particles are
electrons and nuclei more massive than helium.

Most cosmic rays have an energy smaller than
10° eV. The number of more energetic particles
drops rapidly with increasing energy. The most
energetic protons have an energy of 102 eV, but
such particles are very rare—the energy of one
such proton could lift this book about one cen-
timetre. (The largest particle accelerators reach
“only” energies of 10'? eV.)

The distribution of low-energy (less than
10% eV) cosmic rays cannot be reliably deter-
mined from the Earth, since solar “cosmic rays”,
high-energy protons and electrons formed in so-
lar flares fill the solar system and strongly affect
the motion of low-energy cosmic rays.
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Fig. 16.27 The polarisation of starlight. The dashes give
the direction and degree of the polarisation. The thinner
dashes correspond to stars with polarisation smaller than
0.6 %; the thicker dashes to stars with larger polarisation.

The distribution of cosmic rays in the Milky
Way can be directly inferred from gamma-ray and
radio observations. The collisions of cosmic ray
protons with interstellar hydrogen atoms gives
rise to pions which then decay to form a gamma-
ray background. The radio background is formed
by cosmic ray electrons which emit synchrotron
radiation in the interstellar magnetic field.

Both radio and gamma-ray emission are stron-
gly concentrated in the galactic plane. From this
it has been concluded that the sources of cosmic
rays must also be located in the galactic plane. In
addition there are individual peaks in the back-
grounds around known supernova remnants. In
the gamma-ray region such peaks are observed at
e.g. the Crab nebula and the Vela pulsar; in the ra-
dio region the North Polar Spur is a large, nearby
ring-like region of enhanced emission.

Apparently a large fraction of cosmic rays
have their origin in supernovae. An actual super-
nova explosion will give rise to energetic parti-
cles. If a pulsar is formed, observations show that
it will accelerate particles in its surroundings. Fi-
nally the shock waves formed in the expanding
supernova remnant will also give rise to relativis-
tic particles.

On the basis of the relative abundances of var-
ious cosmic ray nuclei, it can be calculated how
far they have travelled before reaching the Earth.
It has been found that typical cosmic ray protons

The scale is shown in the upper left-hand corner. Stars
with polarisation smaller than 0.08 % are indicated by
a small circle. (Mathewson, D.S., Ford, V.L. (1970): Mem.
R.A.S.74,139)

have travelled for a period of a few million years
(and hence also a distance of a few million light-
years) from their point of origin. Since the diame-
ter of the Milky Way is about 100,000 light-years,
the protons have crossed the Milky Way tens of
times in the galactic field.

The Interstellar Magnetic Field The strength
and direction of the interstellar magnetic field are
difficult to determine reliably. Direct measure-
ments are impossible, since the magnetic fields
of the Earth and the Sun are much stronger. How-
ever, using various sources it has been possible to
deduce the existence and strength of the field.

We have already seen that interstellar grains
give rise to interstellar polarisation. In order to
polarise light, the dust grains have to be similarly
oriented; this can only be achieved by a general
magnetic field. Figure 16.27 shows the distribu-
tion of interstellar polarisation over the sky. Stars
near each other generally have the same polarisa-
tion. At low galactic latitudes the polarisation is
almost parallel to the galactic plane, except where
one is looking along a spiral arm.

More precise estimates of the strength of the
magnetic field can be obtained from the rotation
of the plane of polarisation of the radio radia-
tion from distant sources. This Faraday rotation is
proportional to the strength of the magnetic field
and to the electron density. Another method is to
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measure the Zeeman splitting of the 21 cm radio
line. These measurements have fairly consistently
given a value of 10719-10~7 T for the strength of
the interstellar magnetic field. This is about one
millionth of the interplanetary field in the solar
system.

16.9 Examples

Example 16.1 Estimate the dust grain size and
number density in the galactic plane.

Let us compare the interstellar extinction
curve in Fig. 16.4(b) with the Mie scattering
curves in Fig. 16.3. We see that the leftmost
parts of the curves may correspond to each
other: the interval 0 < x <5 with m = 1.5 in
Fig. 16.3 matches the interval 0 < 1/A < 5 um™!
in Fig. 16.4(b). Remembering that x = 2wa/A,
this suggests a constant grain radius a, given by
2mra~1 yum, or a ~ (0.16 um.

In the blue wavelength region (A = 0.44 um),
x = 2.3 and, according to the upper Fig. 16.3,
Qext ~ 2. Using A = 2 mag for the interstellar ex-
tinction at r = 1 kpc, we get, substituting (16.5)
into (16.7), 7 ~ 4 x 10~ m~3. This should give
the order of magnitude of the interstellar dust
density.

As a summary we could say that a consider-
able fraction of the interstellar extinction might
be due to grains of diameter 0.3 pm and particle
density of the order of 10~/ m—> = 100 km 3.

Example 16.2 Estimate the time interval be-
tween successive collisions of a hydrogen atom
in interstellar gas.

Two atoms will collide if the separation be-
tween their centres becomes less than 2r, where
r is the radius of the atom. Thus, the microscopic
cross section for the collision is o = 7 (2r)? =
47r%. The macroscopic cross section, or the num-
ber of collisions of an H atom per unit length, is
then X' = no, where n is the number density of
the H atoms. The mean free path / of an atom
is the inverse of the macroscopic cross section,
| =1/%, and the time between two collisions is
t =1/v, where v is the velocity of the atom.

Considering the numerical values, the Bohr ra-
dius of an H atom is 7 = 5.3 x 10~ m. Taking

n=1cm™> weget! =2.8x 10" m~0.0009 pc.
The average velocity is not far from the root mean
square velocity at 7 = 125 K, given by (5.33):

3kT _1
v=, —=1760ms™ .
m

These values of / and v give t =//v =510 years
for the collision interval. Taking into account the
velocity distribution in the gas, the mean free path
appears to be shorter by a factor of 1/+/2, which
reduces the time to about 400 years.

Example 16.3 Consider the lowest rotational
transition of the CO molecule. For '2CO the fre-
quency of this line is v(!>CO) = 115.27 GHz,
and for 13CO, v(13CO) = 110.20 GHz. Estimate
the optical thickness of each line in a molec-
ular cloud, where the observed brightness tem-
peratures of the lines are T;,('>CO) = 40 K and
Ty, (3CO) =9 K.

For the '2CO line, hv/k = 5.5 K. Thus, the
Rayleigh—Jeans approximation is valid if the tem-
perature is considerably higher than 5 K. This is
not always the case, but the measured value of
Ty, ('2CO) suggests that the approximation can be
used.

Ignoring the background, (16.19) gives

Tp = Texc(1 —e™™).

The optical thickness 7, is proportional to the
opacity or the absorption coefficient «, [see
(4.16)], and «,, is evidently proportional to the
number of CO molecules present. Other differ-
ences between the lines are small, so we can write

7,("2CO) _ n("?CO)
7,(13C0)  n(13CO)’

Adopting the terrestrial value n(12C0) / n(}3C0)
=89, we set

7,(*C0) = 897, (**CO).

Assuming the excitation temperatures equal and
denoting 7, (12CO) by 7, we get

Texe(1 —e77) = 40,
Texc(1 —e77/%) =0.
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The solution of this pair of equations is

7,(*2C0) =23,
Texe = 40 K.

7,(**C0) =0.25,

Thus, the 12CO line seems to be optically thick,
and Tee = Ty (12CO). If also the 3CO line
were optically thick, the brightness temperatures
would be practically equal, and the optical thick-
nesses could not be determined.

16.10 Exercises

Exercise 16.1 Two open clusters, which are
seen near each other in the galactic plane, have
angular diameters « and 3¢, and distance mod-
uli 16.0 and 11.0, respectively. Assuming their

actual diameters are equal, find their distances
and the interstellar extinction coefficient a in
(16.4).

Exercise 16.2 Estimate the free fall velocity on
the surface of a spherical gas cloud contracting
under the influence of its own gravity. Assume
n(Hy) =10° cm™3 and R =5 pc.

Exercise 16.3 The force F exerted by a mag-
netic field B on a charge ¢ moving with veloc-
ity v is F =qv x B. If v is perpendicular to B,
the path of the charge is circular. Find the radius
of the path of an interstellar proton with a kinetic
energy of 1 MeV. Use B = 0.1 nT for the galactic
magnetic field.



Star Clusters and Associations

Several collections of stars can be picked out in
the sky, even with the naked eye. Closer study re-
veals that they really do form separate clusters in
space. E.g. the Pleiades in Taurus and the Hyades
around Aldebaran, the brightest star in Taurus,
are such open star clusters. Almost the whole of
the constellation Coma Berenices is also an open
star cluster. Many objects appearing as nebulous
patches to the unaided eye, when looked at with
a telescope, turn out to be star clusters, like Prae-
sepe in the constellation Cancer, or double cluster
in Perseus (Fig. 17.1). In addition to open clusters
some apparently nebulous objects are very dense
globular clusters, such as those in Hercules and
in Canes Venatici (Fig. 17.2).

The first catalogue of star clusters was pre-
pared by the French astronomer Charles Messier
in 1784. The first version contained only 45
objects, but later Messier himself and Pierre
Meéchain expanded the catalogue to include 103
objects. Later seven more objects were added,
possibly observed by Messier. Messier was inter-
ested in comets, not in those fuzzy objects, and
the reason for the catalogue was to avoid false
alarms. The catalogue contains a mixture of very
different objects, like about 30 globular clusters
and the same number of open clusters, gas nebu-
lae and galaxies.

A larger catalogue, published in 1888, was the
New General Catalogue of Nebulae and Clus-
ters of Stars prepared by the Danish astronomer
John Louis Emil Dreyer. The catalogue numbers
of objects in this list are preceded by the initials
NGC. For example, the large globular cluster in

© Springer-Verlag Berlin Heidelberg 2017

Hercules is object M13 in the Messier catalogue,
and it is also known as NGC 6205. The NGC cat-
alogue was supplemented with the Index Cata-
logue in 1895 and 1910. The objects of this cata-
logue are given the initials IC.

With a small telescope stars of distant clus-
ters and galaxies cannot be distinguished as sep-
arate objects; instead the target looks nebulous.
Therefore their true nature was only little by lit-
tle with spectroscopy and large telescopes. That’s
why those old catalogues contain all kinds of dif-
ferent objects.

Even now there is no catalogue of open clus-
ter complete to some limiting magnitude. The
data are collected from several catalogues pub-
lished by various astronomers, and therefore the
nomenclature is not consistent. The problem is
that open clusters concentrate close the plane of
Milky Way, and there are a lot of background
stars. Thus identifying the cluster members may
require rather detailed studies of the properties of
the stars. Also the members may already have dis-
persed to a very wide area making it difficult to
decide which of them belong to the same clus-
ter.

17.1  Associations

In 1947 the Soviet astronomer Viktor Amaza-
spovich Ambartsumyan discovered that there are
groups of young stars scattered over so large re-
gions of the sky that they would be very difficult
to identify merely on the basis of their appear-
ance. These associations may have a few tens of
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members. One association is found around the
star ¢ Persei, and in the region of Orion, there are
several associations.

Associations are groups of very young stars.
They are usually identified on the basis either
of absolutely bright main sequence stars or of
T Tauri stars. According to the type, one speaks
of OB associations and T Tauri associations. The
most massive stars of spectral class O stay on the
main sequence for only a few million years, and
therefore associations containing them are neces-
sarily young. The T Tauri stars are even younger
stars that are in the process of contracting towards
the main sequence.

Studies of the internal motions in associations
show that they are rapidly dispersing. There are

so few stars in an association that their gravity
cannot hold them together for any length of time.
The observed motions have often confirmed that
the stars in an association were very close to-
gether a few million years ago (Fig. 17.3).

Large amounts of interstellar matter, gas and
dust nebulae often occur in connection with asso-
ciations, supplying information about the connec-
tion between star formation and the interstellar
medium. Infrared observations have shown that
stars are now forming or have recently formed in
many dense interstellar clouds.

Associations are strongly concentrated in the
spiral arms in the plane of the Milky Way. Both in
the Orion region and in the direction of Cepheus,
three generations of associations have been iden-

Fig. 17.1 Open clusters. (a) The Hyades slightly to the
lower left in the photograph. Above them to the right the
Pleiades. (Photograph M. Korpi.) (b) The Pleiades pho-
tographed with the Metsdhovi Schmidt camera. The di-
ameter of the cluster is about 1°. Reflection nebulae are
visible around some of the stars. (Photograph M. Pouta-

nen and H. Virtanen, Helsinki University.) 4 and x Persei,
the double cluster in Perseus. The separation between
the clusters is about 25'. Picture taken with the Met-

sdhovi 60-cm Ritchey Chrétien telescope. (Photograph T.
Markkanen, Helsinki University)
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Fig.17.2 The globular
cluster w Centauri. The
picture was taken with the
Danish 1.5-m telescope at
La Silla, Chile. Thanks to
the excellent seeing, one
can see through the entire
cluster in some places.
(Photograph T. Korhonen,
Turku University)

Fig.17.3 ¢ Persei
association. O and B stars
are shown as open circles.
The proper motion vectors
show the movements of the
stars in the next 500,000
years

+35°

+30°

tified, the oldest ones being most extended and the Milky Way (Sect. 17.3) and external gravita-
the youngest ones, most dense. tional disturbances tend to gradually disperse the
open clusters. Still, many of them are fairly per-

17.2 Open Star Clusters manent; for example, the Pleiades is many hun-
dreds of millions of years old, but nevertheless,

Open clusters usually contain from a few tens to quite a dense cluster.

a few hundreds of stars. The kinetic energy of The distances of star clusters—and also of
the cluster members, the differential rotation of associations—can be obtained from the photo-
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metric or spectroscopic distances of their bright-
est members. For the nearest clusters, in partic-
ular for the Hyades, one can use the method of
kinematic parallaxes, which is based on the fact
that the stars in a cluster all have the same average
space velocity with respect to the Sun. The proper
motions in the Hyades are shown in Fig. 17.4.
They all appear to be directed to the same point.
Figure 17.5 explains how this convergence can be
understood as an effect of perspective, if all clus-
ter members have the same velocity vector with
respect to the observer. Let 6 be the angular dis-
tance of a given star from the convergence point.
The angle between the velocity of the star and

L 30°

L 200

b

. £ 5 10°

S

0°

o 5h 4h 30 min 4h
Fig. 17.4 Proper motions of the Hyades. The vectors
show the movement of the stars in about 10,000 years.
(van Bueren, H.G. (1952): Bull. Astr. Inst. Neth. 11)

Fig.17.5 If all stars move in the same direction, their tan-
gential velocity components appear to be directed towards
the convergence point K

the line of sight will then also be 6. The veloc-
ity components along the line of sight and at right
angles to it, vy and vy, are therefore given by

vr =vcos0,
(17.1)
vy =vsinf.

The radial velocity v; can be measured from the
Doppler shift of the stellar spectrum. The tangen-
tial velocity vy is related to the proper motion p
and the distance r:

V= ur. (17.2)
Thus the distance can be calculated:
ve vsinf v
r=—= = —tan@. (17.3)
w u

By means of this method, the distances of the
individual stars can be determined from the mo-
tion of the cluster as a whole. Since the method
of (ground-based) trigonometric parallaxes is re-
liable only out to a distance of 30 pc, the mov-
ing cluster method is an indispensable way of de-
termining stellar distances. The distance of the
Hyades obtained in this way is about 40 pc. The
distance obtained from the trigonometric paral-
laxes measured directly by the Hipparcos satellite
in the 1990’s is 46 pc. The Hyades is the nearest
open cluster.

The observed HR diagram or the correspond-
ing colour-magnitude diagram of the Hyades
and other nearby star clusters show a very well-
defined and narrow main sequence (Fig. 17.6).
Most of the cluster members are main sequence
stars; there are only a few giants. There are quite
a few stars slightly less than one magnitude above
the main sequence. These are apparently binary
stars whose components have not been resolved.
To see this, let us consider a binary, where both
components have the same magnitude m and the
same colour index. If this system is unresolved,
the colour index will still be the same, but the ob-
served magnitude will be m — 0.75, i.e. slightly
less than one magnitude brighter.

The main sequences of open clusters are gen-
erally located in the same section of the HR or
colour-magnitude diagram (Fig. 17.7). This is be-
cause the material from which the clusters formed
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Fig.17.6 Colour—magnitude diagram of the Hyades. Ap-
parent visual magnitude on the left-hand vertical axis; ab-
solute visual magnitude on the right-hand one
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Fig. 17.7 Schematic colour-magnitude diagrams of star
clusters. M3 is a globular cluster; the others are open clus-
ters. Cluster ages are shown along the main sequence. The
age of a cluster can be told from the point where its stars
begin to turn off the main sequence. (Sandage, A. (1956):
Publ. Astron. Soc. Pac. 68, 498)

has not varied much, i.e. their initial chemical
composition has been fairly constant. In younger
clusters the main sequence extends to brighter
and hotter stars and earlier spectral types. Usu-
ally one can clearly see the point in the diagram

where the main sequence ends and bends over to-
wards the giant branch. This point will depend
very strongly on the age of the cluster. It can
therefore be used in determining the ages of open
clusters. Star clusters are of central importance in
the study of stellar evolution.

The colour-magnitude diagrams of star clus-
ters can also be used to determine their distances.
The method is called main sequence fitting. By
means of multicolour photometry the reddening
due to interstellar dust can be removed from the
observed colours B — V of the stars, yielding the
intrinsic colours (B — V). Most star clusters are
so far away from us that all cluster members can
be taken to be at the same distance. The distance
modulus

’

17.4
10 pc ( )

my, — My =5lg
will then be the same for all members. In (17.4),
my, is the apparent, My the absolute visual mag-
nitude of a star, and r the distance. It has been
assumed that the extinction due to interstellar
dust Ay has been determined from multicolour
photometry and its effect removed from the ob-
served visual magnitude my:

my, =my — Ay.

When the observed colour-magnitude dia-
gram of the cluster is plotted using the apparent
magnitude my, rather than the absolute magni-
tude My on the vertical axis, the only change
will be that the position of the main sequence
is shifted vertically by an amount correspond-
ing to the distance modulus. The observed (my,,
(B — V)p) diagram may now be compared with
the Hyades (My, (B — V)g) diagram used as
a standard. By demanding that the main se-
quences of the two diagrams agree, the distance
modulus and hence the distance can be deter-
mined. The method is very accurate and efficient.
It can be used to determine cluster distances out
to many kiloparsecs.

17.3 Globular Star Clusters

Globular star clusters usually contain about 10°
stars. The distribution of the stars is spherically
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symmetric, and the central densities are about ten
times larger than in open clusters. Stars in glob-
ular clusters are among the oldest in the Milky
Way, and therefore they are of great importance
for studies of stellar evolution. There are about
150-200 globular clusters in the Milky Way.

The colour-magnitude diagram of a typical
globular cluster is shown in Fig. 17.8. The main
sequence only contains faint red stars; there is
a prominent giant branch, and the horizontal and
asymptotic branches are clearly seen. The main
sequence is lower than that of the open clusters,
because the metal abundance is much lower in the
globular clusters.

The horizontal branch stars have a known ab-
solute magnitude, which has been calibrated us-
ing principally RR Lyrae type variables. Because
the horizontal branch stars are bright, they can
be observed even in distant clusters, and thus us-
ing them the distances of globular clusters can be
well determined.

Using the known distances, the linear sizes of
globular clusters can be calculated. It is found
that most of the mass is concentrated to a central
core with a radius of about 0.3-10 pc. Outside
this there is an extended envelope with a radius
that may be 10-100 times larger. At even larger
radii stars will escape from the cluster because of
the tidal force of the Galaxy.

14 r
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Fig. 17.8 Colour-magnitude diagram of the globular
cluster M5. In addition to the main sequence one can see
the giant branch bending to the right and to its left the hor-
izontal brunch. (Arp, H. (1962): Astrophys. J. 135, 311)

The masses of globular clusters can be roughly
estimated from the virial theorem, if the stel-
lar velocities in the cluster have been measured.
More precise values are calculated by fitting theo-
retical models to the observed density and veloc-
ity distributions. In this way masses in the range
10*-10° M, have been obtained.

The globular clusters in the Milky Way fall
into two classes. In the classification given in
Table 18.1 these correspond to intermediate and
halo population II. The disk globular clusters are
concentrated towards the centre and the plane of
the Milky Way and they form a system that is
rotating with the general rotation of the Milky
Way. In contrast, the halo clusters are almost
spherically distributed in an extensive distribution
reaching out to at least 35 kpc. The system of halo
clusters does not rotate, but instead the velocities
of individual clusters are uniformly distributed in
all directions. The abundance of heavy elements
is also different in the two classes of clusters. For
disk clusters it is typically about 30 % of the so-
lar value, for halo clusters it is only about 1 %. In
some clusters the heavy element abundances are
only 1073 times the solar value. The smallest val-
ues, as low as 1074~107> have been detected in
some field stars of the halo. They therefore give
important information about the production of el-
ements in the early Universe and during the for-
mation of the Milky Way.

All globular clusters are old, and the halo clus-
ters are among the oldest known astronomical ob-
jects. Determining a precise age is difficult, and
requires both accurate observations of the turn-
off point of the main sequence in the HR dia-
gram, as well detailed theoretical stellar evolu-
tion models. The ages obtained have been about
13 x 107 years. This age is close to the age of
the Universe calculated from its rate of expansion
(see Chap. 20).

17.4 Example

Example 17.1 Assume that a globular cluster
has a diameter of 40 pc and contains 100,000 stars
of one solar mass each.

(a) Use the virial theorem to find the average ve-
locity of the stars. You can assume that the
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average distance between stars equals the ra-
dius of the cluster.

(b) Find the escape velocity.

(c) Comparing these velocities, can you tell
something about the stability of the cluster?

(a) First, we have to estimate the potential en-
ergy. There are n(n — 1)/2 ~ n*/2 pairs of
stars in the cluster, and the average distance
of each pair is R. Thus the potential energy is
about

m? n?

U=-G——,

R 2

where m = 1 M. The kinetic energy is
L.

T =-—mv°n,
2

where v is the root mean square velocity. Ac-
cording to the virial theorem we have T =
—1/2U, whence

2,2

| m-n
R 2

1
—mvn=—

2 2
Solving for the velocity we get

v2

_ Gmn
2R

6.7x10~ 1 m3kg~1s2x2.0x1030 kgx 10°
- 40x3.1x1016 m

=1.1 x 10" m?®s~2,

which gives v ~ 3 kms™.

(b) The escape velocity from the edge of the
cluster is

2Gmn
Ve =/
R

= V42 =2v=6kms .

(c) No. The average velocity seems to be smaller
than the escape velocity, but it was derived
from the virial theorem assuming that the
cluster is stable.

17.5 Exercises

Exercise 17.1 A globular cluster consists of
100,000 stars of the solar absolute magnitude.
Calculate the total apparent magnitude of the
cluster, if its distance is 10 kpc.

Exercise 17.2 If the apparent magnitude of the
cluster of the previous exercise is 10, what is its
distance if the interstellar absorption in the direc-
tion of the cluster is 1.5 mag/kpc?

Exercise 17.3 The Pleiades open cluster con-
tains 230 stars within 4 pc. Estimate the veloci-
ties of the stars in the cluster using the virial the-
orem. For simplicity, let the mass of each star be
replaced by 1 M.



The Milky Way

On clear, moonless nights a nebulous band of
light can be seen stretching across the sky. This
is the Milky Way (Fig. 18.1). The name is used
both for the phenomenon in the sky and for the
large stellar system causing it. The Milky Way
system is also called the Galaxy—with a capital
letter. The general term galaxy is used to refer to
the countless stellar systems more or less like our
Milky Way.

The band of the Milky Way extends round the
whole celestial sphere. It is a huge system con-
sisting mostly of stars, among them the Sun. The
stars of the Milky Way form a flattened disk-like
system. In the direction of the plane of the disk
huge numbers of stars are visible, whereas rela-
tively few are seen in the perpendicular direction.
The faint light of distant stars merges into a uni-
form glow, and therefore the Milky Way appears
as a nebulous band to the naked eye. A long-
exposure photograph reveals hundreds of thou-
sands of stars (Fig. 18.2).

In the early 17th century Galileo Galilei, us-
ing his first telescope, discovered that the Milky
Way consists of innumerable stars. Already in
the late 18th century William Herschel attempted
to determine the size and shape of the Milky
Way by means of star counts. Only early in the
20th century did the Dutch astronomer Jacobus
Kapteyn obtain the first estimate of the size of
the Milky Way. The true size of the Milky Way
and the Sun’s position in it became clear finally
in the 1920’s from Harlow Shapley’s studies of
the space distribution of globular clusters.

© Springer-Verlag Berlin Heidelberg 2017

In studying the structure of the Milky Way, it is
convenient to choose a spherical coordinate sys-
tem so that the fundamental plane is the symme-
try plane of the Milky Way. This is defined as the
symmetry plane of the distribution of neutral hy-
drogen, and it agrees quite closely with the sym-
metry plane defined by the distribution of stars in
the solar neighbourhood (within a few kpc).

The basic direction in the fundamental plane
has been chosen to be the direction of the centre
of the Milky Way. This is located in the constella-
tion Sagittarius (@ = 17 h45.7 min, § = — 29° 00’,
epoch 2000.0) at a distance of about 8.5 kpc. The
galactic latitude is counted from the plane of the
Galaxy to its pole, going from 0° to 4 90°, and
to the galactic south pole, from 0° to — 90°. The
galactic coordinate system is shown in Fig. 18.3
(see also Sect. 2.8).

Methods of Distance
Measurement

18.1

In order to study the structure of the Milky Way,
one needs to know how various kinds of objects,
such as stars, star clusters and interstellar matter,
are distributed in space. The most important ways
of measuring the distances will first be consid-
ered.

Trigonometric Parallaxes The method of tri-
gonometric parallaxes is based on the apparent
yearly back-and-forth movement of stars in the
sky, caused by the orbital motion of the Earth.
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Fig. 18.1 The nebulous band of the Milky Way stretches across the entire sky. (Photograph M. and T. Keskiila, Lund
Observatory)

From Earth-based observations the trigonometric
parallaxes can be reliably measured out to a dis-
tance of about 30 pc; beyond 100 pc this method
is no longer useful. The situation is, however,
changing. The limit has already been pushed to
a few hundred parsecs by the Hipparcos satellite,
and Gaia will mean another major leap in the ac-
curacy.

The Motion of the Sun with Respect to the
Neighbouring Stars. The Local Standard of
Rest The motion of the Sun with respect to the
neighbouring stars is reflected in their proper mo-
tions and radial velocities (Fig. 18.4). The point
towards which the Sun’s motion among the stars
seems to be directed is called the apex. The op-
posite point is the antapex. The stars near the
apex appear to be approaching; their radial veloc-
ities have the largest negative values, on the av-
erage. In the direction of the antapex the largest
(positive) radial velocities are observed. On the
great circle perpendicular to the apex-antapex di-
rection, the radial velocities are zero on the aver-
age, but the proper motions are large. The average
proper motions decrease towards the apex and the
antapex, but always point from the apex towards
the antapex.

In order to study the true motions of the stars,
one has to define a coordinate system with respect
to which the motions are to be defined. The most
practical frame of reference is defined so that the
stars in the solar neighbourhood are at rest, on
the average. More precisely, this local standard
of rest (LSR) is defined as follows.

Let us suppose the velocities of the stars be-
ing considered are distributed at random. Their
velocities with respect to the Sun, i.e. their radial
velocities, proper motions and distances, are as-
sumed to be known. The local standard of rest is
then defined so that the mean value of the veloc-
ity vectors is opposite to the velocity of the Sun
with respect to the LSR. Clearly the mean veloc-
ity of the relevant stars with respect to the LSR
will then be zero. The motion of the Sun with re-
spect to the LSR is found to be:

o = 18 h00 min = 270°
8§ =+430°
vp=19.7 kms™!

1 =56°
b=+23°

Apex coordinates

Solar velocity

The apex is located in the constellation of Her-
cules. When the sample of stars used to deter-
mine the LSR is restricted to a subset of all the
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Fig. 18.2 A section of
about 40° of the Milky
Way between the
constellations of Cygnus
and Aquila. The brightest
star at the upper right is
Vega (o Lyrae).
(Photograph Palomar
Observatory)

stars in the solar neighbourhood, e.g. to stars of
a given spectral class, the sample will usually
have slightly different kinematic properties, and
the coordinates of the solar apex will change cor-
respondingly.

The velocity of an individual star with respect
to the local standard of rest is called the pecu-
liar motion of the star. The peculiar velocity of
a star is obtained by adding the velocity of the
Sun with respect to the LSR to the measured ve-
locity. Naturally the velocities should be treated
as vectors.

The local standard of rest is at rest only with
respect to a close neighbourhood of the Sun. The
Sun and the nearby stars, and thus also the LSR,

are moving round the centre of the Milky Way at
a speed that is ten times greater than the typical
peculiar velocities of stars in the solar neighbour-
hood (Fig. 18.5).

Statistical Parallaxes The velocity of the Sun
with respect to neighbouring stars is about
20 kms~!. This means that in one year, the Sun
moves about 4 au with respect to the stars.

Let us consider a star S (Fig. 18.6), whose an-
gular distance from the apex is ¢ and which is at
a distance r from the Sun. In a time interval ¢ the
star will move away from the apex at the angular
velocity u/t = s because of the solar motion.
In the same time interval, the Sun will move the
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distance s. The sine theorem for triangles yields

, ssind  ssin?d
— ~
rXr = I~

sinu u

, (18.1)

because the distance remains nearly unchanged
and the angle u is very small. In addition to the
component ua due to solar motion, the observed
proper motion has a component due to the pe-
culiar velocity of the star. This can be removed

o=12h 514

Galactic centre

Fig. 18.3 The directions to the galactic centre and the
North galactic pole (NGP) in equatorial coordinates. The
galactic longitude / is measured from the galactic centre
along the galactic plane. The coordinates of the Galactic
centre are precessed from the defining equinox 1950 and
are not very accurate (see A.P. Lane (1979), PASP, 91,
405)

Fig. 18.4 Because of the motion of the Sun towards the
apex, the average radial velocity of the nearby stars ap-
pears largest in the apex and antapex directions

by taking an average of (18.1) for a sample of
stars, since the peculiar velocities of the stars in
the solar neighbourhood can be assumed to be
randomly distributed. By observing the average
proper motion of objects known to be at the same
distance one thus obtains their actual distance.
A similar statistical method can be applied to ra-
dial velocities.

Objects that are at the same distance can be
found as follows. We know that the distance mod-
ulus m — M and the distance r are related accord-
ing to:

m—M=5lg(r/10pc) + A(r),  (18.2)

where A is the interstellar extinction. Thus ob-
jects that have the same apparent and the same
absolute magnitude will be at the same distance.
It should be noted that we need not know the ab-
solute magnitude as long as it is the same for all
stars in the sample. Suitable classes of stars are

Galactic
centre

Fig. 18.5 The local standard of rest, defined by the stars
in the solar neighbourhood, moves with respect to the
galactic centre. However, the average value of the stellar
peculiar velocities with respect to the LSR is zero

Fig. 18.6 When the Sun has moved the distance s to-
wards the apex, the direction to the star S appears to have
changed by the angle u
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main sequence A4 stars, RR Lyrae variables and
classical cepheids with some given period. The
stars in a cluster are also all at the same distance.
This method has been used, for example, to de-
termine the distance to the Hyades as explained
in Sect. 17.2.

Parallaxes based on the peculiar or apex mo-
tion of the Sun are called statistical or secular par-
allaxes.

Main Sequence Fitting If the distance of a
cluster is known, it is possible to plot its HR dia-
gram with the absolute magnitude as the vertical
coordinate. Another cluster, whose distance is to
be determined, can then be plotted in the same
diagram using the apparent magnitudes as the
vertical coordinate. Now the vertical distance of
the main sequences tells how much the apparent
magnitudes differ from the absolute ones. Thus
the distance modulus m — M can be measured.
This method, known as the main sequence fitting,
works for clusters whose stars are roughly at the
same distance; if the distances vary too much,
a clear main sequence cannot be distinguished.

Photometric Parallaxes The determination of
the distance directly from (18.2) is called the
photometric method of distance determination
and the corresponding parallax, the photomet-
ric parallax. The most difficult task when using
this method usually involves finding the absolute
magnitude; there are many ways of doing this.
For example, the two-dimensional MKK spec-
tral classification allows one to determine the ab-
solute magnitude from the spectrum. The abso-
lute magnitudes of cepheids can be obtained from
their periods. A specially useful method for star
clusters is the procedure of main sequence fitting.
A condition for the photometric method is that
the absolute magnitude scale first be calibrated by
some other method.

Trigonometric parallaxes do not reach very
far. For example, even with the Hipparcos satel-
lite, only a few cepheid distances have been ac-
curately measured by this method. The method
of statistical parallaxes is indispensable for cal-
ibrating the absolute magnitudes of bright ob-
jects. When this has been done, the photometric

-5 0 My 5 10

Fig. 18.7 The observed luminosity function @ (My) and
the initial luminosity function ¥ (My) for main sequence
stars in the solar neighbourhood. The functions give the
number of stars per cubic parsec in the magnitude inter-
val [My — 1/2, My + 1/2]; they are actually the prod-
ucts D@ and DY, where D is the stellar density function
(in the solar neighbourhood)

method can be used to obtain distances of objects
even further away.

Other examples of indicators of brightness, lu-
minosity criteria, are characteristic spectral lines
or the periods of cepheids. Again, their use re-
quires that they first be calibrated by means of
some other method. It is a characteristic fea-
ture of astronomical distance determinations that
the measurement of large distances is based on
knowledge of the distances to nearer objects.

18.2 Stellar Statistics

The Stellar Luminosity Function By system-
atically observing all stars in the solar neighbour-
hood, one can find the distribution of their abso-
lute magnitudes. This is given by the luminosity
function @ (M) (Fig. 18.7), which gives the rela-
tive number of main sequence stars with absolute
magnitudes in the range [M — 1/2, M 4 1/2]. No
stars appear to be forming at present in the re-
gion of space where the luminosity function has
been determined. The age of the Milky Way is
10-15 Ga, which means that all stars less massive
than 0.9 M, will still be on the main sequence.
On the other hand, more massive stars, formed
early in the history of the Milky Way, will have
completed their evolution and disappeared. Low-
mass stars have accumulated in the luminosity
function for many generations of star formation,
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whereas bright, high-mass stars are the result of
recent star formation.

By taking into account the different main se-
quence lifetimes of stars of different masses and
hence of different magnitudes, one can deter-
mine the initial luminosity function ¥ (M), which
gives the brightness distribution at the time of star
formation, the zero age main sequence luminos-
ity function. The relation between the function ¥
and the observed luminosity function is

V(M) =2M)To/1e(M), (18.3)
where Ty is the age of the Milky Way and
tg(M) is the main sequence lifetime of stars of
magnitude M. Here we assume that the birth rate
of stars of magnitude M has remained constant
during the lifetime of the Milky Way. The initial
luminosity function is shown in Fig. 18.7.

The Fundamental Equation of Stellar Statis-
tics. The Stellar Density A crucial problem for
studies of the structure of the Milky Way is to find
out how the density of stars varies in space. The
number of stars per unit volume at a distance r in
the direction (/, b) from the Sun is given by the
stellar density D = D(r, 1, b).

The stellar density cannot be directly observed
except in the immediate neighbourhood of the
Sun. However, it can be calculated if one knows
the luminosity function and the interstellar ex-
tinction as a function of distance in a given direc-
tion. In addition the number of stars per unit solid
angle (e.g. per square arc second) can be deter-
mined as a function of limiting apparent magni-
tude by means of star counts (Fig. 18.8).

Let us consider the stars within the solid an-
gle w in the direction (/, ) and in the distance
range [r,r + dr] (Fig. 18.9). We let their lumi-
nosity function @ (M) be the same as in the so-
lar neighbourhood and their unknown stellar den-
sity D. The absolute magnitude M of the stars of
apparent magnitude m is, as usual,

M =m —51g(r/10 pc) — A(r).

The number of stars in the apparent magnitude
interval [m — 0.5, m + 0.5] in the volume element

Fig. 18.8 The stellar density is determined by means of
star counts. In practice, the counting is done on photo-
graphic plates. (Cartoon S. Harris)

Fig. 18.9 The size of the volume element at distance r in
the direction (I, b) is wr? dr

dV = wr?dr at distance r is (Fig. 18.9)
dN(m) = D(r, 1, b)

X ®|m—5lg—— — A(r)|dV.
10 pc

(18.4)

The stars of apparent magnitude m in the given
area of the sky will in reality be at many differ-
ent distances. In order to obtain their total num-
ber N(m), one has to integrate dN (m) over all
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Fig. 18.10 The stellar
density near the Sun.

(a) The stellar density of
spectral classes A2—AS5 in
the galactic plane,
according to

S.W. McCuskey. The
numbers next to the
isodensity curves give the
number of stars in

10,000 pc3. (b) The
distribution of different
spectral classes
perpendicularly to the
galactic plane according to
T. Elvius. The density in
the galactic plane has been
normalised to one

Galactic centre

distances r:
o0
N(M)=/ D(r,1,b)
0

x cb[m _5lg % - A(r)i|a)r2 dr.
pc

(18.5)

Equation (18.5) is called the fundamental equa-
tion of stellar statistics. Its left-hand side, the
number of stars in the apparent magnitude inter-
val [m — 0.5, m + 0.5] in the solid angle w, is
obtained from the observations: one counts the
stars of different magnitudes in a chosen area of
a photographic plate. The luminosity function is
known from the solar neighbourhood. The extinc-
tion A(r) can be determined for the chosen areas,
for instance, by means of multicolour photome-
try. In order to solve the integral equation (18.5)
for D(r, 1, b), several methods have been devel-
oped, but we shall not go into them here.

Figure 18.10(a) shows the stellar density in the
solar neighbourhood in the plane of the Milky
Way, and Fig. 18.10(b) in the direction perpen-
dicular to the plane. There are several individual
concentrations, but e.g. spiral structure cannot be
observed in such a limited region of space.

The Distribution of Bright Objects Using
stellar statistical methods, one can only study
the close neighbourhood of the Sun, out to about
1 kpc at the most. Absolutely faint objects can-

0.01 T .
G-K giants

not be observed very far. Since the solar neigh-
bourhood appears to be fairly representative of
the general properties of the Milky Way, its study
is naturally important, giving information e.g. on
the distributions and luminosity functions of stars
of various spectral types. However, in order to get
an idea of the larger-scale structure of the Milky
Way, one has to make use of objects that are as
absolutely bright as possible, and which can be
observed even at large distances.

Examples of suitable objects are stars of early
spectral types, HII regions, OB associations,
open star clusters, cepheids, RR Lyrae stars, su-
pergiants and giants of late spectral types, and
globular clusters. Some of these objects differ
greatly in age, such as the young OB associations,
on the one hand, and the old globular clusters, on
the other. Any differences in their space distribu-
tion tell us about changes in the general structure
of the Milky Way.

The young optical objects, the HII regions,
OB associations and open clusters, are strongly
concentrated in the plane of the Milky Way (Ta-
ble 18.1). Figure 18.11 shows that they also ap-
pear to be concentrated in three drawn-out bands,
at least within the observed region. Since these
types of objects in other galaxies are known to
be part of a spiral structure, the observed bands
in the Milky Way have been interpreted as por-
tions of three spiral arms passing through the so-
lar neighbourhood. Stars of later spectral types
seem to be much more evenly distributed. Apart



374

18 The Milky Way

Table 18.1 Populations of the Milky Way; z is the vertical distance from the galactic plane, and v, the velocity com-

ponent perpendicular to the galactic plane

Population Typical objects Average age | z [pc] | v [k/s] | Metal
[10° a] abundance
Halo population IT Subdwarfs, globular clusters RR Lyr 14-12 2000 |75 0.001
(P>044d)
Intermediate population II | Long period variables 12-10 700 25 0.005
Disc population Planetary nebulae, novae bright red 12-2 400 18 0.01-0.02
giants
Old population I A stars, Me dwarfs classical cepheids | 2-0.1 160 10 0.02
Young population I Gas, dust, supergiants, T Tau stars 0.1 120 0.03-0.04
Fig.18.11 The 180° O O-BO0 associations

distribution of various
objects in the galactic
plane. Three condensations
can be discerned: the
Sagittarius arm (lowest),
the local arm near the Sun
and (outermost) the
Perseus arm

270°

from a few special directions, interstellar dust
limits observations in the galactic plane to within
3-4 kpc.

Old objects, particularly the globular clusters,
have an almost spherical distribution about the
centre of the Milky Way (Fig. 18.12). The space
density of old objects increases towards the galac-
tic centre. They can be used to determine the dis-
tance of the Sun from the galactic centre; the
value of this distance is about 8.5 kpc. More
recent measurements using other methods have
given a distance of 8 kpc (26,000 light years).

Stellar Populations Studies of the motions of
the stars in the Milky Way have revealed that the

* O-B2 clusters
* Bright cepheids
© HII regions

* Dark nebulae

° B pe stars

90°

orbits of stars moving in the galactic plane are al-
most circular. These stars are also usually young,
a few hundred million years at the most. They
also contain a relatively large amount of heavy
elements, about 2—4 %. The interstellar mate-
rial similarly moves in the galactic plane in al-
most circular orbits. On the basis of their motions
and their chemical composition, the interstellar
medium and the youngest stars are collectively
referred to as population I.

Outside the plane of the Milky Way, an almost
spherically symmetric halo extends out to over
50 kpc and even further out there is a corona. The
stellar density is largest near the galactic centre
and decreases outwards. The halo contains very
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little interstellar matter, and its stars are old, per-
haps up to 13 x 10° years. These stars are also
very metal-poor. Their orbits may be very ec-
centric and show no preference for the galactic
plane. On the basis of these criteria, one defines
stars of population II. Typical population II ob-
jects are the globular clusters, and the RR Lyrae
and W Virginis stars.

While the Sun and the closest stars move much
like the stars of population I, the stars of popula-
tion II have large velocities with respect to the lo-
cal standard of rest, up to more than 300 km s,
In reality their velocities at the solar distance
from the galactic centre are quite small and may
sometimes be opposite to the direction of mo-
tion of the LSR. The large relative velocities
only reflect the motion of the LSR with a veloc-
ity of about 220 kms~! round the galactic cen-
tre.

Between these two extremes, there is a se-
quence of intermediate populations. In addition
to populations I and II, one generally also speaks
of a disk population, including the Sun, for in-
stance. The typical motions, chemical compo-
sition and age of the various populations (Ta-
ble 18.1) contain information about the evolu-
tion of our Galaxy and about the formation of its
stars.

18.3 The Rotation of the Milky Way

Differential Rotation. Oort’s Formulas The
flatness of the Milky Way is already suggestive
of a general rotation about an axis normal to the
galactic plane. Observations of the motions both
of stars and of interstellar gas have confirmed
this rotation and shown it to be differential. This
means that the angular velocity of rotation de-
pends on the distance from the galactic centre
(Fig. 18.13). Thus the Milky Way does not ro-
tate like a rigid body. Near the Sun, the rotational
velocity decreases with radius.

The observable effects of the galactic rotation
were derived by the Dutch astronomer Jan H.
Oort. Let us suppose the stars are moving in cir-
cular orbits about the galactic centre (Fig. 18.14).
This approximation is acceptable for population I
stars and gas. The star S, seen from the Sun ©
at galactic longitude / at distance r, has circular
velocity V at a distance R from the centre. Sim-
ilarly for the Sun the galactic radius and velocity
are Rog and V). The relative radial velocity v, of
the star with respect to the Sun is the difference
between the projections of the circular velocities
on the line of sight:

vy =V cosa — Vpsinl, (18.6)
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a) Velocity w.r.t the Milky Way

b) Velocity w.r.t the Sun

Fig. 18.13 The effect of differential rotation on the ra-
dial velocities and proper motions of stars. (a) Near the
Sun the orbital velocities of stars decrease outwards in the
Galaxy. (b) The relative velocity with respect to the Sun
is obtained by subtracting the solar velocity from the ve-
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Fig. 18.14 In order to derive Oort’s formulas, the veloc-
ity vectors of the Sun and the star S are divided into com-
ponents along the line ®S and normal to it

where « is the angle between the velocity vector
of the star and the line of sight. From Fig. 18.14
the angle CS®© = o + 90°. By applying the sine

-
[

o

)

d) Tangential velocity

locity vectors in (a). (¢) The radial components of the ve-
locities with respect to the Sun. This component vanishes
for stars on the same orbit as the Sun. (d) The tangential
components of the velocities

theorem to the triangle CS® one obtains

sin( +90°) Ry

sin/ R

or

Ry .
cosa = R sin/. (18.7)

Denoting the angular velocity of the star by
o = V/R and that of the Sun by wy = Vo/Ro,
one obtains the observable radial velocity in the

form
vy = Ro(w — wo) sinl. (18.8)

The tangential component of the relative ve-
locity of the Sun and the star is obtained as fol-
lows. From Fig. 18.14,

vy = Vsina — Vpcos!/ = Rwsina — Rowg cosl.
The triangle ©CP gives

Rsina = Rycosl —r,
and hence

v = Ro(w — wp) cosl — wr. (18.9)



18.3 The Rotation of the Milky Way 377
Oort noted that in the close neighbourhood of  a) 4 U L]
the Sun (r < Rp), the difference of the angular 30 - r=2kpe
velocities will be very small. Therefore a good 20
approximation for the exact equations (18.8) and 10
(18.9) is obtained by keeping only the first term of 0 I kpe 360"
the Taylor series of @ — wy in the neighbourhood ok 180° l
of R = Ry:
-20 —
(dw) (R — Ry) + -30 -
w—wy=\|-— —Ro)+---.
dR / p_g,
Using w = V/R and V (Rg) = Vp, one finds W Pl
10 =
1 R dv Vol — Ry) L .
w—wy)y~N — —_ — — . T
T RZLNAR J g, 0 N s N\ /360
For R =~ Ry > r, the difference R — Ry ~
—r cosl. One thus obtains an approximate form

Vi dv
U R [—0 — (—) ]rcoslsinl
Ry dR R=R,

(18.10)

or
v~ Arsin2/,

where A is a characteristic parameter of the solar
neighbourhood of the Galaxy, the first Oort con-
stant:

A_l Vo dv
" 2LRy \dR/j_p, I

For the tangential relative velocity, one simi-
larly obtains, since wr ~ wor:

Vi dv
Ve~ |:—0 — (—) :|rcoszl — wor.
Ro dR R=R,

Because 2cos?] = 1 + cos 2/, this may be written

(18.11)

vy & Ar cos 2l + Br, (18.12)

where A is the same as before and B, the second
Oort constant, is

1[ Vo dv
B=——|—+4|— .
2| Ro dR R=R,

The proper motion p = v/r is then given by the
expression

(18.13)

u~ Acos2l + B. (18.14)

Fig. 18.15 The velocity components due to differen-
tial rotation according to Oort’s formulas as functions
of galactic longitude. (a) Radial velocities for objects at
a distance of 1 and 2 kpc. (Compare with Fig. 18.13.)
Strictly, the longitude at which the radial velocity vanishes
depends on the distance. Oort’s formulas are valid only in
the close vicinity of the Sun. (b) Proper motions

Equation (18.10) says that the observed radial
velocities of stars at the same distance should
be a double sine curve as a function of galactic
longitude. This has been confirmed by observa-
tions (Fig. 18.15(a)). If the distance to the stars
involved is known, the amplitude of the curve de-
termines the value of the Oort constant A.

In